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Suicidal diathesis – a synapse disease 

The Joint Submission to the Senate Community Affairs Committee 

Inquiry into Suicide in Australia by Lifeline Australia and others poses the 

questions as to why people commit suicide and self-harm and what can we do 

about it (see Chapters 3 and 4 of the Submission). In this paper I examine the 

neuropsychiatric basis of suicide, and show that it is likely to be primarily 

associated with a loss of synaptic connections in certain parts of the frontal 

lobes of the brain in the largest cohort of suicide victims. This cohort consists of 

those that have been subjected to sexual and physical abuse as children. 

Suggestions are made as to what may be done to prevent their appalling 

suffering. 

Epidemiology shows that the major risk factors for suicide are 

sexual/physical abuse in childhood and a family history of suicide, together with 

mental health problems such as borderline personality disorder and post-

traumatic stress syndrome, factors that are predominant in males and in the 

indigenous members of the population (see Figures 5 and 6 on pages 50 and 53 

of the Lifeline Australia and others submission). These risk factors are not 

independent as adolescent male suicide attempters are 5.6 times more likely to 

suffer from post-traumatic stress syndrome and 3.1 times more likely to suffer 

from borderline personality disorder if they have been sexually abused as 

children [1]. Indeed those that have been sexually and/or physically abused 

when children amount to about 65% of all those who attempt suicide in a study 

of adolescents in a State comparable to that of an Australian State (namely, 

Seattle, State of Washington, [2]; for a review see [3]). In this Seattle study 

suicide rates in which the victim injures themselves are five times higher if they 

have been sexually abused as children than if they have not been abused [2]. 
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Besides sexual/physical abuse the other major risk factor is a family 

history of suicide. Family, twin and adoption studies indicate that suicidal 

behavior has an underlying genetic predisposition which, although distinct from 

a genetic predisposition to mental illness, is nevertheless perhaps contingent on 

it [4-9], so that these genetic predispositions are not independent when 

considering suicide. For example a large cohort amongst those that commit 

suicide or attempt to do so consists of patients with borderline personality 

disorder and impulsive-aggressive behavior [10-13]. Levels of impulsive-

aggressive behavior are correlated with the history of suicidal behavior in 

patients [14] such that suicide behavior is at least partly explained by familial 

transmission of impulsive-aggressive behavior [15-17]. 

In the last few years the changes that occur in the brain of those 

suffering from psychiatric diseases such as major depression and stress have 

been ascertained with the introduction of non-invasive magnetic resonance 

imaging techniques. These, together with animal experiments, have pin-pointed 

the loss of synaptic function and connections between nerve cells in certain 

parts of the brain as the main concomitants of childhood abuse leading to 

stress, depression and suicidal diathesis as outlined below. It is argued that only 

through an understanding of suicidal diathesis as essentially a disease of the 

synaptic connections in certain parts of the brain will the stigma of suicide 

victims be removed and rational procedures put in place to both protect children 

and rehabilitate those that have suffered this debilitating loss of synaptic 

function. 

 

 

 



	   4	  

Synaptic connections in the brain 

Our psychological capacities as in thinking, remembering, perceiving 

and feeling are dependent on the normal working of our brains (Fig.1). A brief 

description is given here of synaptic connections in the brain, before turning to 

consideration of what goes awry with these connections in suicidal diathesis. 

 

Figure 1. Illustration of the human brain 

A principal cell of the brain is the neuron, consisting of a round cell body 

about 20 µm (1/50 of a millimeter) in diameter, possessing about nine 

processes. Eight of these processes are relatively short and called dendrites 

whereas the ninth is called the axon and proceeds from the cell body for 

distances that range from a few one thousandths of a millimeter up to metres 

(Fig.2).  

 

The brain contains about 100,000 million neurons, each with an axon 

forming connections onto many other neurons such that on average each 

neuron possesses about 10,000 connections (Fig.2). This provides for an 

immense amount of connectivity (namely 100,000 million multiplied by 10,000 

connections) served by well over 100,000 kilometres (62,000 miles) of axons. 

There is, in general, parcellation of neurons, their connections and long axonal 

projections in the cortex of the brain. The grey matter of the brain consists of cell 

bodies together with the connections between them collectively called the 
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neuropil. The white matter of the brain consists of myelinated axons.  

 

 

 

Figure 2. Diagram of neurons and synaptic transmission 

 

The neuropil is of great interest in the context of psychiatric diseases. Fig. 

2 shows a diagram indicating two neurons each with their dendritic (labeled) 

processes together with their single axon (labeled) which is ensheathed by the 

processes of an oligodendrocyte (not shown). Boxed is the ending of an axon 

that forms a bulb on the surface of the dendrite of another neuron to form a 

connection called a synapse. This synapse is shown enlarged in the insert and 

possesses small circular synaptic vesicles that contain chemical substances 

released at the ‘presynaptic axon terminal’ into a ‘synaptic cleft’ where they 

diffuse to attach to a receptor molecule on the ‘postsynaptic dendrite’ of the 

neuron membrane. Following activation of the receptor molecule the neuron 

may generate an electrical propagating signal down its axon. The dimensions of 

the synapse are about 1 µm or 1/1000 of a millimeter.  
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Figure 3. Sites of synaptic connections along the length of the 

dendrite and its branches 

 

A real neuron in the cortex together with one of its dendritic processes is 

shown in Fig. 3. This figure shows the sites of synaptic connections along the 

length of the dendrite and its branches, with each site delineated by a small 

spineous process emanating from the dendrite [18]. Given that the horizontal 

calibration bar in this image is 50 µm there is at least one synaptic spine each 2 

µm along a dendrite. Although each of these synapses is only about 1 um in 

extent, the large number of them (10,000) on each neuron ensures that the total 

volume they occupy is more than that of the cell body of the neuron. The 

neuropil then contains these dendrites and their connections at synapses. 

 

Depression and the loss of synapses in the rostral anterior cingulate 

cortex 

Functional magnetic resonance imaging or positron emission tomography 

can give a non-invasive estimate of the functional electrical activity of neurons in 

different parts of the brain, that is a measurement that does not involve any 
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invasive intrusion into the skull to gain access to the cortex. Using these 

techniques indicates that the cortex of the brain in patients suffering from major 

depression undergoes significant changes in activity, principally in two areas, 

the amygdala and the rostral anterior cingulate cortex (rACC) (Fig.4).  

 

 

Figure 4. Illustration of the amygdala and the rostral anterior 

cingulate cortex (rACC). 

 

Interestingly these two areas have connections between them in which 

the amygdala is normally under inhibitory regulation by the rACC (Fig.4;  [19-

21]). Similar observations have been carried out on the rACC of those suffering 

from generalized anxiety disorders in which it has been ascertained that the 

rACC is hypoactive rather than hyperactive as is the amygdala [22]. In this case 

the loss of normal activity in the rACC probably leads to the excessive activity 

that occurs in the amygdala as a consequence of a failure of the former to 

effectively inhibit the latter. What then are the physical changes in the rACC that 

lead to its failure to inhibit the amygdala? A search for the anatomical 

concomitants of the activity failure in rACC using magnetic resonance imaging 

shows a considerable decrease (about 12%; [23,24]) in the volume of the rACC 

of depressed patients. In Figure 5 are shown anatomical landmarks traced of 

the anterior and posterior sub-regions of the cingulate cortex [25]. It is the 
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volume included in the traced areas that declines in depression [26]. Indeed 

there is a good correlation between the extent of depression of a patient and the 

extent of decrease in volume of the rACC [27].  

 

Figure 5. Anatomical landmarks of the anterior (top) and posterior 

(bottom) sub-regions of the cingulate cortex 

 

Synaptic loss and dendritic atrophy in animals subjected to stressful 

conditions occur in brain regions that are homologous to the areas where grey 

matter loss is apparent in major depressive disorder patients, such as the 

medial prefrontal cortex [28-33]. Presumably this synapse loss and dendritic 

atrophy is responsible for the large decrease in grey matter volume consequent 

on the loss of neuropil in these patients. It is very likely then that homologous 

mechanisms to those that give rise to the loss of synapses and dendrites in 

stressed animals operate to induce the loss of synapses and dendrites in 

prefrontal cortex of those suffering from major depressive disorders and in 

bipolar disorder [30]. The fact that synapse loss and dendritic atrophy can be 

reversed by lithium administration [30], which also restores anterior cingulate 
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cortex grey matter volume to normal in bipolar depressed patients [34-36], 

greatly enhances the proposition that the volume changes in grey matter 

observed in major depressive disease and bipolar disorder are due to the loss of 

synapses and dendrites in medial prefrontal cortex regions such as the rostral 

anterior cingulate cortex. Such loss has now been directly observed in the 

cortex of patients in postmortem studies [37,38]. 

 

Stress, activation of hormones and synapse loss 

A poor attachment and/or a stressful relationship between mother and 

child in the first 18 months results in relative inhibition of the child in approaching 

novel objects or participating in novel events [39]. The maternal relationship 

during childhood is critical in determining depression behavior in the adult 

[40,41]. Anxiety following stressful events is often followed by major depressive 

disorder in those so predisposed. Anxiety precedes the development of major 

depressive disorder in about 30% of first episode cases and in about 75% of 

recurrent episodes, with a 50% co-morbidity [42]. The number of stressful life 

events from age 21 years to 25 years is predictive of subsequent depression 

[43,44]. Like major depression, stress is accompanied by greatly enhanced 

activity in the amygdala and significantly reduced activity in the rostral anterior 

cingulate cortex (rACC; [45,46]). 

These changes in amygdala activity associated with stress are similar to 

those observed in major depression and so might be due to changes in 

synapses. Animal studies show that stressful events lead to the loss of 

synapses and in some cases whole dendrites of neurons in prefrontal cortex, a 

process that leads to the malfunctioning of synaptic neural networks [47]. Mild 

stress of animals for 20 min during 7 consecutive days leads to decrease in the 
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number of synapses along dendrites of neurons in the prefrontal cortex [48]. 

Daily restraint stress of animals, for about 3 hr over 3 weeks, leads to a loss of 

about 30% of all synapses on neurons in medial prefrontal cortex and this is 

accompanied by a loss of distal dendritic branches  ([32,49-50]; see also [31]). 

Figure 6 shows examples of randomly selected dendritic segments in control (A) 

and stressed (B) animals; numbers shown for each segment represent 

synapses per micrometer length of dendrite for each dendrite analyzed in 

prefrontal cortex [51,52]. Clearly there is a loss of synapses along the dendrites 

of the stressed animals. 

 

 

 

 

Figure 6. Loss of synapses along the dendrites of stressed animals. 

 

The loss of synapses and dendrites is largely reversed if a period of rest 

from stress is allowed or if the agent lithium is administered. Thus a 3-week 

recovery period following a 3-week regime of daily stress results in the return of 
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most of the dendrites lost during the stress period [53]. A child or adolescent 

with fewer synapses than normal in the frontal regions following a stressful 

event might then be exceptionally vulnerable to depression as synapse loss 

occurs at a high rate in the prefrontal cortex of normal adolescents, so that more 

than 30% of synapses found at the beginning of this period have normally been 

lost by the end of it [54,55]. Figure 7 shows that synapses are added during 

normal childhood (at a rate of about half a million per second) until about 5 

years and then there is a normal loss of synapses, mostly during adolescence, 

until a steady number of synapses is maintained (see the dark line in Fig.7).  

 

Figure 7. Average number of synapses across different ages. 

 

If however a child at an early age possesses a low number of synapses 

(broken line in Fig.7) or looses excessive numbers of synapses during 

adolescence (thin line in Fig.7) then the number of synapses present when 

adulthood is reached is exceptionally low. This will lead to a failure of synaptic 

neural networks and therefore failure of normal brain function. As noted above, 

a more than 30% decrease in volume and activity of prefrontal cortex occurs in 

major depression disorder (for reviews see [56-58]) indicating a net loss of 60% 

of synapses there compared with childhood  (see Fig.7 and [58-62]). 
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Stressful events, such as loss of employment or shifting one’s house, are 

accompanied by activation of the amygdala as well as of the reticular formation, 

which engages the hypothalamus to secrete corticotropin-releasing hormone 

(CRH; see, for example, [63] and references therein; Fig.8). This brings the 

adrenohypophysis of the pituitary into play so that it releases adrenocorticotropic 

hormone (ACTH) that acts on the adrenal cortex to in turn release the 

glucocorticoid cortisol (Fig.8).  

 

 

 

Figure 8. The effects of stress on the hypothalamic-pituitary-adrenal 

network. 

 

This glucocorticoid (GC) functions as a negative regulator of both the 

pituitary ACTH and the hypothalamic CRH, completing the hypothalamic-

pituitary-adrenal network (Fig. 9). This figure 9 shows the negative feedback of 

the glucocorticoid on the release of CRH and ACTH (indicated by a bar at the 

end of the pathways) as well as on the activity of the hippocampus, required for 

retaining memories. In contrast to this, the glucocorticoid acts back to excite the 
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amygdala (indicated by an arrow at the end of the pathway), the brain structure 

implicated in depression as noted above.  

 

 

 

 

Figure 9. Glucocorticoid as a negative regulator of the 

hypothalamic-pituitary-adrenal network. 

 

Are the high circulating glucocorticoid levels that accompany stress 

responsible for synapse loss? Chronic administration of glucocorticoids alone 

produces loss of synapses. Daily injections into animals of the glucocorticoids 

that binds to glucocorticoid receptors (GR) in medial prefrontal cortex, leads to 

loss of synapses and dendrites [48,64-66]. Young children in an insecure 

relationship with a carer show elevated glucocorticoid cortisol levels when 

experiencing depressing events whereas those in secure relationships with a 

carer do not (for a review see [67]). Older children with such insecure 

relationships not only show enhanced levels of the glucocorticoid cortisol in 

stressful situations but also a higher risk of behavioral and emotional problems 

in maturity [68,69]. Indeed adults suffering from clinical depression that have 

been abused as children show increased responsiveness of the hypothalamic-
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pituitary-adrenal system as compared with depressed adults who have not had 

such experiences when children [40,70]. 

In summary, CRH is modulated by stress during early development, when 

maternal care determines the level of central CRH expression and can alter the 

‘set point’ of CRH gene sensitivity into adulthood, through activation of the 

central-stress response [71]. Decreased maternal care gives rise to offspring 

that are more fearful when adults and possess higher brain levels of CRH [72-

74]. Increased maternal care in animals during the first 10 days of life ensures 

that when they are adults, exposure to acute stress leads amongst other things 

to decreased levels of CRH messenger RNA and reduced plasma ACTH, 

compared with those that do not receive such increased maternal care, with a 

consequent reduction in activation of the hypothalamic-pituitary-adrenal system 

responses to stress [75,76]. These effects are probably mediated by changes in 

the GR gene, a mechanism that I will now comment on because of its 

implications in suicide diathesis [77]. 

 

 

Childhood abuse and the epigenetic origin of synapse loss 

Childhood abuse is a significant factor in suicidal diathesis [11]. Early life 

abuse increases significantly the risk of life-time major depressive disorder 

[78,79]. Even children who experience mild adversities are likely to be more 

reactive to later major difficulties in life [80]. Major depressive disorder is 

accompanied by changes in the ‘set-point’ of the hypothalamic-pituitary-adrenal 

system, with increased CRH, ACTH and cortisol secretory activity occurring 

which is contingent on impairment in the expression of the glutocorticoid 

receptor (GRII; Fig.8; [81]), so that cortisol no longer inhibits the release of CRH 
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and ACTH (Fig.9). Abused girls have a greater incidence of suicidal ideation and 

suicide attempts than those not abused, and this is accompanied by 

dysregulation of the hypothalamic-pituitary-adrenal system (Fig.9; [82]). Indeed 

the failure of the synthetic glucocorticoid dexamethasone to suppress cortisol 

release in patients is a strong predictor of subsequent suicide ([83]; for a review, 

see [84]). The inability of dexamethasone to suppress serum levels of cortisol in 

these suicidal patients points to failure in the normal function of the GRII [85]. 

Maternal care has effects that militate against this impairment of the GRII [86]. 

This involves changes in the expression of the GR gene in new-borns, 

determined in part by both prenatal mood and postnatal care [87].  

Partial down-regulation of GRII throughout the brain and the 

hypothalamic-pituitary-adrenal system in animals gives results very similar to 

those observed in suicidal youths: these are normal basal levels of 

glucocorticoids, failure to suppress the release of these with dexamethasone 

and increased depressive behaviour when stressed, as well as substantial 

increases in cortisol release when stressed. There is now good evidence that 

what are called epigenetic effects lead to a decrease in GRII and that this might 

occur following childhood neglect and abuse leading to suicidal diathesis. 

Epigenetics is the ensemble of alterations in gene functions that are heritable, 

but cannot be explained by changes in the DNA sequence itself, the normal 

basis for changes in gene function [88,89]. It is now known that suicide victims 

with a history of childhood abuse possess epigenetic changes that lead to down-

regulation of GRII [88,90,91]. Methylation of the promoter region of the GRII gene 

could give rise to such down-regulation of GRII.  
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Figure 10. Methylation of various sites of the GRII gene promoter 

region. 

 

Figure 10 shows changes in the methylation of a promoter region of the 

GRII gene with the frequency indicated for the extent of methylation observed at 

various locations along the gene promoter region for suicide victims with a 

history of childhood abuse (black histogram bar), suicide victims with no history 

of childhood abuse (grey histogram bar), and control subjects (clear histogram 

bar) [91]. Clearly there is a much higher degree of methylation for suicide 

victims that have experienced childhood abuse than for those without a history 

of such abuse. 

In major depressive disorder the medial prefrontal cortex has a reduced 

volume [92] due to a decrease in grey matter [93]. This is particularly the case 

following sexual abuse as a child [94]. A reduced volume also occurs in the 

anterior cingulate cortex  [95], but not the amygdala that increases in size in 

major depressive disorders [96] as noted above. In suicidal patients with 

depression, there is a very large decrease in the volume of grey matter in the 

medial prefrontal cortex with a concomitant increase in grey matter in the 

amygdala [97]. In animal studies, in which direct staining and counting of 

synapses can be made, there is about a 30% decrease of synapses in 3-month-

old rodents that have been subjected to a lack of paternal/maternal care in the 

first 3 weeks [98], suggesting that the loss of grey matter volume following 

abuse in infants is due to a loss of synapses. 
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Suicidal diathesis and synapse diseases 

In suicidal patients with depression, there is a large decrease in the 

volume of grey matter in the anterior cingulate cortex due to a loss of neuropil, 

mostly reflecting the loss of synapses. Such changes in synapses are probably 

in part due to the action of the glucocorticoid cortisol acting on GRII located at 

the synapses, although various dysfunctions in transporters and receptors at 

synapses which use the transmitters serotonin, dopamine or glutamate may also 

contribute to loss of function of synapses and their degeneration (for reviews, 

see [99,100]). There is now a plausible model linking epigenetic changes in GRII 

brought about by childhood abuse, subsequent failure of the intrinsic regulation 

of the hypothalamic-pituitary-adrenal system, increased cortisol release under 

stress, loss of synapses in the rACC resulting in increased amygdala activity, 

followed by suicidal diathesis [50,70]. Such a model is likely to apply to the 65% 

of all adolescent suicide attempters that have a history of childhood 

sexual/physical abuse [2]. 

Suicidal diathesis is largely a synapse disease, in which loss of synapse 

function and of entire synapses occurs as a result of childhood abuse in the 

large majority of suicide victims that suffer such abuse. This reveals such victims 

as having been exposed to conditions that lead to the decline of normal brain 

function as a consequence of the loss of normal synapses so that they cannot 

avoid lapsing into conditions, such as post-traumatic stress syndrome, 

traditionally referred to as mental health problems. No more stigma should be 

applied to such victims than applies to a child that has a limb broken by a brutish 

parent: we have for more than a century been able to see that the limb is broken 

with X-rays, now we can see the ‘broken’ synaptic neural networks giving rise to 
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grey matter loss with magnetic resonance imaging. Three priorities should now 

be emphasized in suicide prevention. First, to keep a careful watch on families 

that show any record of childhood abuse so as to optimize the chances of 

preventing the onset of synapse diseases in the child. Second, to identify and 

apply appropriate pharmacological and cognitive behavioral interventions to 

reverse synapse diseases that support the path to suicide. Finally, to maintain 

careful follow-up and tracking of individuals with these diseases in order to 

ensure that their synapse disease state remains in remission. 
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