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Abstract

Australian fire weather shows spatiotemporal variability on interannual and multi-decadal

time scales. We investigate the climate factors that drive this variability using 39 station-

based historical time series of the seasonal 90th-percentile of the McArthur Forest Fire Dan-

ger Index (FFDI) extending from 1973 through 2017. Using correlation analyses, we exam-

ine the relationship of these time series to the El Niño Southern Oscillation (ENSO), the

Southern Annular Mode (SAM) and the Indian Ocean Dipole (IOD), considering both con-

current and time-lagged relationships. Additionally, longer term behaviour of the time series

using linear trend analysis is discussed in the context of the climate drivers, Interdecadal

Pacific Oscillation (IPO) and anthropogenic climate change. The results show that ENSO is

the main driver for interannual variability of fire weather, as defined by FFDI in this study, for

most of Australia. In general, El Niño-like conditions lead to more extreme fire weather, with

this effect stronger in eastern Australia. However, there are significant regional variations to

this general rule. In NSW, particularly along the central coast, negative SAM is a primary

influence for elevated fire weather in late-winter and spring. In the southeast (VIC and TAS),

the El Niño-like impact is exacerbated when positive IOD conditions are simultaneously

observed. The spring conditions are key, and strongly influence what is observed during the

following summer. On longer time scales (45 years), linear trends are upward at most sta-

tions; this trend is strongest in the southeast and during the spring. The positive trends are

not driven by the trends in the climate drivers and they are not consistent with hypothesized

impacts of the IPO, either before or after its late-1990s shift to the cold phase. We propose

that anthropogenic climate change is the primary driver of the trend, through both higher

mean temperatures and potentially through associated shifts in large-scale rainfall patterns.

Variations from interannual factors are generally larger in magnitude than the trend effects

observed to date.
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Introduction

Wildfires, or bushfires as they are more commonly known in Australia, can have devastating

consequences when intersecting with society values. When and where a bushfire occurs is

related to four ’switches’: 1) ignition, either human-caused or from natural sources; 2.) fuel

abundance and continuity–a sufficient amount of fuel must be present; 3.) fuel dryness, with

lower moisture content leading to a higher chance for fire; and 4.) suitable ’fire weather’ condi-

tions for fire spread, generally hot, dry and windy [1]. The state of these switches is strongly

dependent on the meteorological conditions across multiple spatiotemporal scales, ranging

from short and local (e.g. a stand of trees over a few minutes) to planet-sized variations in oce-

anic and atmospheric circulations [1]. Fire weather is also expected to change in Australia

(and elsewhere) as anthropogenic climate change manifests itself [2].

Fire weather can, for some areas, be summarised by a fire weather index, a combination of

different meteorological factors and fuel information of relevance to the risks associated to

wildfires [3]. Fire weather indices are typically expressed through some combination of surface

air temperature, precipitation, relative humidity and wind speed [4]. A commonly used index

in Australia is the McArthur’s Forest Fire Danger Index (FFDI). This index combines weather

variables to determine expected fire behaviour for open canopy dry Eucalypt forest in eastern

Australia [5]. The index was originally developed to determine the difficulty of suppressing a

fire but is now used more broadly to issue warnings by the fire agencies. More severe fire

weather, as captured by FFDI, during a bushfire event typically results in greater than average

numbers of houses and/or lives lost in historical Australian fires [6,7].

In this study, we are concerned with changes across Australia over seasonal, interannual

and longer-term time scales. At these scales, Australian climate variability is driven by several

modes of variability that result in spatiotemporal variations of temperature and rainfall [8,9].

Logically, these modes should also impact the variability of Australian fire weather, but the

relationships are not entirely clear. Some of the most significant climate drivers for Australia

are the El Niño Southern Oscillation (ENSO) [10,11], Indian Ocean Dipole (IOD) [12], and

the Southern Annular Mode (SAM) [13]. These climate drivers involve changes in the ocean

and atmosphere that can be both near Australia and remote from Australia and affect different

parts of the continent in different ways and at various times of the year.

Multiple studies have found linkages between these climate drivers and FFDI, for various

regions of Australia. Most widely studied has been ENSO, with El Niño years resulting in higher

fire dangers [3,14–17] and increased fire activity [18–22]. For the IOD, the positive phase occur-

ring in winter and spring has been linked to higher fire danger over southeastern Australia

[23,24]. Finally, SAM has been identified as a controlling factor of interannual and century-

scale fire activity in Tasmania [25]. However, there are no studies that analyse the independent

and co-dependent influences of these climate drivers on fire weather for the whole of Australia.

In addition to this interannual variability, the climate of Australia is changing over longer

time scales. The State of the Climate 2018 report for Australia [26] notes that the average sur-

face temperatures have increased by just over 1.0˚ C since 1910, with about 70% of this change

occurring since the 1970s. There has also been about a 10–20% decline in cool season rainfall

across southern Australia since the 1970s, while many parts of northern Australia have seen

wetter conditions. Coincident with these changes, an increasing trend in seasonal values of

FFDI has been noted across much of southern Australia [3,4]. These changes are believed to be

closely associated with the observed global increase in greenhouse gases, but the signal is

potentially modulated by the Interdecadal Pacific Oscillation (IPO), an ENSO-like pattern of

decadal (i.e. 10–40 year) SST variability that has been identified through statistical analysis of

historical records [27] and linked to fire risk [15]. While the science of climate change
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continues to strengthen, Australian fire weather studies have less often investigated the link

between observed increases in fire weather and climate change. However, a recent study based

on gridded data across Australia found that changes in fire weather conditions in southern

Australia are attributable, at least in part, to anthropogenic climate change, including in rela-

tion to increasing temperatures [3].

In this study, we will investigate the interannual and longer-term variability of fire weather,

as measured by FFDI, at individual station locations across Australia for the period from 1973

through 2017 and explore the relationships and drivers of the trends and variability. Under-

standing the interactions between climate drivers and Australian fire weather has the potential

to provide information that may result in more effective fire planning and resource manage-

ment on seasonal and long term scales.

Data and methodology

Fire weather data

Fire weather data in this study come from the historical fire weather dataset described by [28].

This dataset is based on daily station-based measurements of meteorological variables across

Australia (Fig 1 and Table 1). Following [4], this dataset has been extended to 2017, and thus

has an additional seven years. A subset of the 39 stations with the most complete records are

chosen for further analysis in this study. Fire weather in this dataset is represented by the

McArthur Forest Fire Danger Index (FFDI) [5] and the numerical algorithm described in [29].

Specifically, FFDI is calculated as

FFDI ¼ 1:2753 expð0:987 lnðDFÞ þ 0:0338 T � 0:0345 RH þ 0:0234 VÞ

Fig 1. Map of 39 stations locations (for full names of stations refer to Table 1) and the states and territories

labelled in red.

https://doi.org/10.1371/journal.pone.0222328.g001
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where DF is the drought factor, T is the daily maximum temperature (˚C), RH the 1500 local

time (LT) relative humidity (%) and V is the 1500 LT wind speed (km h-1). The drought factor

(DF) is calculated following [30] using the Keetch Byram Drought Index (KBDI) [31] as the

basis for the soil moisture deficit. KBDI is computed using daily observations of rainfall taken

at 0900 LT. No consideration of varying fuel types or amount or the slope of the terrain is

made by FFDI. While this is a limitation when considering fire behaviour, FFDI is used here as

a general proxy for the characteristics of the fire-weather climate.

Table 1. The list of station included in the study along with the abbreviation, state, latitude and longitude.

Station (Abbreviation) State Latitude Longitude

Adelaide (AD) SA -34.92 138.62

Albany Airport (AL) WA -34.94 117.80

Alice Springs (AS) NT -23.80 133.89

Amberley (AM) QLD -27.63 152.71

Brisbane Airport (BA) QLD -27.39 153.13

Broome (BR) WA -17.95 122.23

Cairns (CA) QLD -16.87 145.75

Canberra (CB) ACT -35.30 149.20

Carnarvon (CN) WA -24.89 113.67

Ceduna (CE) SA -32.13 133.70

Charleville (CH) QLD -26.42 146.25

Cobar (CO) NSW -31.49 145.83

Coffs Harbour (CF) NSW -30.31 153.12

Darwin (DA) NT -12.42 130.89

Dubbo (DU) SA -32.22 148.57

Esperance (ES) WA -33.83 121.89

Geraldton (GE) WA -28.80 114.70

Hobart (HO) TAS -42.89 147.33

Kalgoorlie (KA) WA -30.78 121.45

Launceston Airport (LA) TAS -41.54 147.20

Laverton (LV) VIC -37.86 144.76

Mackay (MA) QLD -21.12 149.22

Meekatharra (MK) WA -26.61 118.54

Melbourne Airport (ME) VIC -37.68 144.84

Mildura (MI) VIC -34.23 142.08

Moree (MO) NSW -29.49 149.85

Mt Gambier (MG) SA -37.75 140.77

Mt Isa (MT) QLD -20.68 139.49

Nowra (NO) NSW -34.95 150.54

Perth Airport (PE) WA -31.93 115.98

Port Hedland (PO) WA -20.37 118.63

Rockhampton (RO) QLD -23.38 150.48

Sale (SA) VIC -38.12 147.13

Sydney Airport (SY) NSW -33.94 151.17

Tennant Creek (TE) NT -19.64 134.18

Townsville (TO) QLD -19.25 146.77

Wagga (WA) NSW -35.16 147.46

Williamtown (WI) NSW -32.79 151.84

Woomera (WO) SA -31.16 136.81

https://doi.org/10.1371/journal.pone.0222328.t001
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The period of analysis extends from December 1972 through June 2017. The data are fur-

ther refined by considering the seasonal distributions of FFDI over the ’standard’ meteorologi-

cal seasons of DJF (December January February), MAM (March April May), JJA (June July

August) and SON (September October November). Daily FFDI for each season and each fire

year (July-June) are ranked, and the 90th percentile (termed FFDI90) is identified. This variable

is representative of the upper end of the fire weather spectrum for a given season. Specific

FFDI90 data points are identified by the season name and the last two digits of the year; for

DJF, the ’year’ refers to that of January and February (i.e. DJF73 means December 1972

through February 1973).

The FFDI90 variables are homogenized to account for differences in the wind speed mea-

surement techniques at a given station over time, following the method described by [28]. No

adjustments are made for any possible temperature, humidity or rainfall inhomogeneities.

Over the time of this analysis, these are expected to have a relatively small impact on the long-

term stability of the data [28].

In general, there are N = 44 years of available data. This applies to FFDI90 during JJA and

SON. One additional year (i.e. N = 45) is available during DJF and MAM for FFDI90. A few

stations have missing seasons: Brisbane AP during DJF73, Launceston for JJA08 and Mt Isa for

DJF73.

Interpreting FFDI: Fuel, climate and fire regime

At any time of the year it is fire season in some part of Australia [32]. The climate in the tropi-

cal north is primarily determined by the annual monsoon with a wet season from November

to April and a dry season from April to October; most of the fires occur during the latter [18].

In central parts of Australia, the fire season occurs in spring and summer, whereas in the

southern parts of Australia the peak fire season generally occurs in the summer months (Dec-

Feb) extending into autumn [5].

As noted by [32], the vegetation, or fuels, vary across Australia and can be broadly classified

as grassland (75% cover of Australia), Forest (22% cover) and Mallee-Heath (2% cover). Wil-

liams et al. [33] discuss how climate and fuels interact to produce fire regimes in Australia. In

northern and central Australia, grasslands dominate, and the fire regime is fuel driven. This

means the level of fire activity is limited by the amount of fuel available, positively related to

antecedent rainfall totals in the first order. For southern and eastern parts of Australia, many

fires occur in forested regions (along with many grass fires). In these regions, copious fuel is

present but needs extended periods of dry conditions or drought to dry out in order to burn.

Therefore, the preceding conditions play a significant role in the flammability of the fuels, and

fire activity in these areas can be considered broadly weather driven.

These differences in fuel and weather across Australia mean that the relevance and use of

FFDI to explain fire behaviour varies across Australia. FFDI does not capture every one of the

four switches and is tuned for forest conditions. Hence, it is better suited for eastern and south-

ern parts of Australia rather than fuel driven regimes of the north and grasslands elsewhere.

However, we are primarily interested in its use as a general proxy for the climate of fire weather,

not the specific fire behaviour. Hot, dry and windy conditions are constant factors for danger-

ous fire weather across all regions and FFDI captures these well. So, while use of FFDI will intro-

duce some limitations as a standard across Australia, it is suitable for the purposes of this study.

Climate index data

As noted in the Introduction, we consider the variability in fire weather in relation to the

ENSO, IOD and SAM. Each mode of climate variability is characterised by an index whose
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values reflect the state of that mode. Typically, these modes are characterised by multiple indi-

ces, with the different indices representing separate approaches and/or different datasets; these

often yield subtle differences in the timing and strength of a given mode. We have considered

multiple indices in this work (not shown here). The different indices do yield slightly different

results; however, these differences are not large and do not affect the broad conclusions pre-

sented in this work.

The climate indices chosen for this work are summarized in Table 2. For ENSO, we select

the NINO3.4 SST index (N34) based on the NOAA ERSST v5 dataset [34], an average of SST

over a pre-defined region of central Pacific. The warmest (coolest) values of N34 are indicative

of El Niño (La Niña) conditions. To characterize IOD, the Dipole Mode Index (DMI) [12] is

chosen. This index represents the difference between SST anomalies in the western and eastern

Indian Ocean. Positive values indicate anomalously warm conditions in the west and anoma-

lously cool conditions in the east; negative conditions are the opposite. The underlying SST

data come from the HadISST dataset [35]. The SAM index used here is from [36]. It is derived

from standardized zonal average mean sea level pressure differences between 40˚S and 65˚S

from 12 surface observation stations. Positive values indicate relatively higher pressure in the

mid-latitudes, along with a general poleward displacement of the eddy-driven jet stream and

associated storm tracks.

Analytical methods

This study primarily uses statistical methods to arrive at its conclusions. The main approach is

the use of full and partial correlation analysis to examine the dependence between climate

drivers and seasonal FFDI90. Partial correlation analysis is used to isolate the effects of the cho-

sen climate index by the linear removal of the effects of other variables that are also correlated.

Both concurrent and lagged relationships are considered in the correlations, with all variables

linearly de-trended to capture only the interannual relationships, rather than the effects of con-

gruent trends. Statistical significance is generally assumed at the 95% confidence level,

although the additional levels of 90 and 99% are demarcated to help interpret the Figures and

the strength of the relationships. Confidence levels are computed using number of samples

(N)-2 degrees of freedom for full analysis and ranging between N-3 or N-4 degrees of freedom

for partial analyses (N-4 if IOD is included in the analyses otherwise N-3). Figs 2–7 summarise

the results of the full correlation analyses between seasonal fire weather and the various climate

drivers. Results are presented on a map by the correlation coefficient (r) multiplied by 100

plotted at the location of each station (Fig 1). Scores are colour-coded to highlight their statisti-

cal significance, with correlations at or exceeding 99% significance level shown in red, the 95%

level in magenta and the 90% level in green. All other values are in black. Some scores are dis-

placed from their exact location to improve clarity (Darwin, Laverton, Melbourne Airport and

Wagga Wagga). In analysing the results, we generally focus on spatially coherent groupings

where the 95% significance levels have been reached. We present selected results showing the

concurrent relationships (no lag) and then some one- or two-season lags (i.e. the seasonal cli-

mate index leads the seasonal FFDI90 by the lag amount). The analyses were for all

Table 2. Climate driver index name and data source.

Climate Variable Index Source

ENSO NINO3.4 SST http://www.cpc.ncep.noaa.gov/data/indices/

IOD Dipole Mode Index https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/

SAM Meridional pressure gradient http://www.nerc-bas.ac.uk/icd/gjma/sam.html

https://doi.org/10.1371/journal.pone.0222328.t002
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combinations of variables and lead times, with only the more meaningful results presented

here; all other results are available in the Supporting Information (S1–S18 Figs).

Composite analysis is used to further explore the relative importance of the different cli-

mate drivers. This was achieved by creating composite FFDI90 values based on the extreme

high and low phases of each mode of climate variability, defined as the average of FFDI90 in

the top and bottom 9 (approximately quintiles) values of each climate index for a given season.

Statistically significant differences in FFDI90 between the high and low phases of the index are

Fig 2. Correlation coefficient values multiplied by 100 calculated for seasonal 90th percentile FFDI and seasonal N34 (a) MAM, (b) JJA, (c) SON and

(d) DJF (1972–2017). Significance greater than 99% in red, 95% in magenta and 90% green.

https://doi.org/10.1371/journal.pone.0222328.g002
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Fig 3. Correlation coefficient values multiplied by 100 calculated for DJF 90th percentile FFDI and the preceding a. SON N34 (one-season lag) b. JJA N34 (two-season

lag). Significance greater than 99% in red, 95% in magenta and 90% green.

https://doi.org/10.1371/journal.pone.0222328.g003

Fig 4. Correlation coefficient values multiplied by 100 calculated for seasonal 90th percentile FFDI and seasonal DMI (a) JJA, (b) SON (1972–2017). Significance greater

than 99% in red, 95% in magenta and 90% green.

https://doi.org/10.1371/journal.pone.0222328.g004
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assessed with a Student t-test using the null hypothesis that the means between the periods are

equal. The focus for these composites and the associated Figures is on the capital cities and

other selected sites for SON and DJF, the active fire season for southern Australia.

Finally, linear trends are estimated using ordinary least squares regression of annual and

seasonal means of 90th percentile regressed against time (Julian Day). For the ’all-stations’

average trend, annual FFDI90 values are standardized (by removing the mean and dividing by

the standard deviation) before computing the averages; this removes potential artefacts result-

ing from combining data with different mean and variance. Significance of the trend is

assumed when its value exceeds the 2-sigma confidence interval. When calculating the confi-

dence interval, the autocorrelation of residuals is considered, resulting in a reduced number of

degrees of freedom [37]. Trends can be difficult to interpret, particularly with a short time

series. Hence, the results are valid only over the time period considered and the choice of start

and/or stop times to compute the trend can strongly influence the result. Clarke et al. [4] inves-

tigated this latter sensitivity of the trend to an earlier version of the same dataset used here (7

fewer years of data) and suggested that this influence was minimal. This has been tested for

this dataset (not shown here), and while the trend is sensitive to changes in start and end

point, the results are still statistically significant.

Results

Full correlations

El Niño Southern Oscillation (ENSO). Across Australia, the correlations between

FFDI90 and N34 SST are positive (Fig 2). The positive relationship here indicates that FFDI90

is higher when SSTs are higher (which also occurs during the El Niño phase of ENSO), indicat-

ing enhanced fire weather during these seasons. The strength of the correlation between N34

Fig 5. Correlation coefficient values multiplied by 100 calculated for DJF 90th percentile FFDI and the preceding a. SON DMI (one season lag), b. JJA DMI (2 season

lag) (1972–2017). Significance greater than 99% in red, 95% in magenta and 90% green.

https://doi.org/10.1371/journal.pone.0222328.g005
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and FFDI90 varies with season (Fig 2). During all seasons, the correlations tend to be stronger

in eastern Australia. During MAM, the correlations between N34 and FFDI90 are generally

weak. Some marginal correlations are identified in NSW during this season. These results are

not surprising, as this season is generally the end of an old ENSO cycle or the beginning of a

new one [11]. During JJA, the N34/FFDI90 relationship is weak, but stronger relationships are

Fig 6. Correlation coefficient values multiplied by 100 calculated for seasonal 90th percentile FFDI and seasonal SAM (a) MAM, (b) JJA, (c) SON and (d) DJF (1972–

2017). Significance greater than 99% in red, 95% in magenta and 90% green.

https://doi.org/10.1371/journal.pone.0222328.g006
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beginning to develop in central parts of NT, NSW and VIC. While relationships are becoming

significant, the amplitude remains small. The seasonal cycle still dominates, and fire danger

remains low in VIC and SA even in El Niño years during this season (JJA).

N34 has the strongest influence on FFDI90 during spring (SON). During this season, the

relationship is strong and widespread with all states and territories indicating statistically sig-

nificant correlations. Exceptions are seen in coastal NSW, coastal WA and Ceduna in SA. In

DJF, the significant correlations are still widespread but have a smaller spatial footprint. The

strength of the relationship has slightly increased in NSW/ACT and WA, while decreasing in

QLD. In much of SA, TAS and VIC, there is no significant relationship.

When lag seasons are considered we find the DJF FFDI90 is significantly related to the

SON N34 (one-season lag) for the same stations as found to be significant with the DJF N34

(no lag) and in most cases this relationship is stronger than with the concurrent season’s N34

values (Fig 3). When a two-season lag is considered, DJF FFDI90 with JJA N34, a similar rela-

tionship is evident as with concurrent and one-season lag for DJF FFDI90, but the strength of

relationship is slightly reduced. The ENSO cycle has a pronounced multi-seasonal effect on

fire weather across Australia. All other season and lag combinations between N34 and FFDI90

are available in S1–S3 Figs.

Indian Ocean Dipole (IOD). During the usual active seasons of the IOD (i.e. JJA, SON),

a mostly positive relationship exists between DMI and FFDI90 particularly in the west and

south of Australia. In JJA, the spatial range of the correlations between the DMI and FFDI90 is

more westward, with all stations in WA and the coastal stations of SA showing significant

Fig 7. Correlation coefficient values multiplied by 100 calculated for DJF 90th percentile FFDI and the preceding SAM

(a) SON (one season lag), (b) JJA (two season lag) (1972–2017). Significance greater than 99% in red, 95% in magenta

and 90% green.

https://doi.org/10.1371/journal.pone.0222328.g007
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relationships. There are also some significant relationships in Victoria and central NSW/ACT

(Fig 4). In SON the relationship between DMI and FFDI90 is no longer significant for most

stations in WA. However, most stations across the south east of Australia are now significantly

related.

For the DJF FFDI90 there is a one-season (SON DMI) and two-season (JJA DMI) lag rela-

tionship evident with DMI for both Tasmanian stations and also for Perth (WA) (Fig 5). The

one season lag relationship is also evident in the very south east of Victoria and NSW/ACT.

There are no other stations with a statistically significant two-season lag relationship but there

are one-season (SON DMI) relationships with DJF FFDI for Albany and Broome (WA), Sale

(Victoria), Charleville (QLD), Wagga (NSW), Canberra (ACT) along with Alice Springs and

Darwin (NT) (Fig 5). All other season and lag combinations between DMI and FFDI90 are

available in S4 Fig.

Southern Annular Mode (SAM). Across much of Australia, the correlations between

SAM and the FFDI90 are (generally) negative, but only show significant correlations during

some seasons and in some areas (Fig 6). There are a few seasons and stations where the correla-

tion is positive as noted below.

Fig 8. Mean FFDI90 during SON values for top (Q1) and bottom (Q5) quintile climate states (ENSO, IOD, SAM) during SON for capital cities. Shaded columns

indicate a statistically significant difference between the two quintiles for that climate driver.

https://doi.org/10.1371/journal.pone.0222328.g008
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During MAM, SAM is significantly related to FFDI90 for mostly inland stations across Aus-

tralia (Fig 6). In JJA, the relationship with the inland sites is no longer significant for most sta-

tions, with some of the NSW coastal stations have a significant negative correlation during

this season. There is also a significant positive relationship in Hobart (TAS). In SON, the

Fig 9. Mean FFDI90 during SON values for top (Q1) and bottom (Q5) quintile climate states (ENSO, IOD, SAM) during DJF for capital cities (one season lag).

Shaded columns indicate a statistically significant difference between the two quintiles for that climate driver.

https://doi.org/10.1371/journal.pone.0222328.g009

Table 3. Correlation coefficients between seasonal climate drivers NINO3.4, DMI and SAM for the period Decem-

ber 1972 to May 2017. Results for DMI only include JJA and SON when IOD is usually formed. Bold indicates statisti-

cally significant p<0.05.

Climate Driver N34 DMI

MAM (n = 45) DMI

SAM -0.09 -0.11

JJA (n = 44) DMI 0.33

SAM 0.12 0.20

SON (n = 44) DMI 0.68

SAM -0.16 -0.24

DJF (n = 45) DMI

SAM -0.23

https://doi.org/10.1371/journal.pone.0222328.t003
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relationship between SAM and FFDI90 is significant for almost all stations across NSW/ACT

and QLD. In DJF the relationship between FFDI90 and SAM is still significant for all stations

in NSW/ACT but is slightly reduced in magnitude. In other eastern states, the relationship

between FFDI90 and SAM is no longer statistically significant for most stations.

For the DJF FFDI90 the one-season lag (SON SAM), most stations in SA, VIC and TAS

(Fig 7) have a significant negative correlation. All other season and lag combinations between

SAM and FFDI90 are available in S5–S7 Figs.

Composite analysis

We further explore the relative importance of the different climate drivers by creating compos-

ite FFDI90 values based on the extreme high and low phases of each mode of climate variabil-

ity. Fig 8 presents average FFDI90 in SON based on the sorted SON climate modes (in S2

Table); Fig 9 presents average FFDI90 values for DJF based on SON rankings, reflecting a one-

season lag. While there is considerable overlap in the years used in each composite, especially

between ENSO and IOD, the years used are not identical and these differences allow insight

into the relative importance of the different climate modes.

For the zero-lag case (Fig 8), there are generally significant differences in FFDI90 between

the highest N34 SSTs and the lowest N34 SSTs; even where not significant, the differences are

often large (e.g. Adelaide); Perth and Broome are exceptions, consistent with the lack of signifi-

cant correlations noted earlier. For IOD, the positive phase generally has larger average

FFDI90 values compared to the negative phase; the relationships are not significant at Alice

Spring, Amberley or Sydney, and Broome shows the opposite tendency. At the stations where

the difference is significant, the average FFDI90 values during positive IOD are larger than

those for the highest N34 SSTs. This suggests a mutual effect where positive IOD in conjunc-

tion with higher N34 SSTs, creates a worse fire weather situation than either alone. With SAM,

a statistically significant difference is observed between the negative and positive phases at

most stations. The negative phase mostly has higher FFDI90, with the WA stations the excep-

tion here. At Sydney, the negative SAM average FFDI90 is greater than the higher N34 SSTs,

with little overlap between the sets of years. Regardless of statistical significance, these differ-

ences generally align with the sense of the correlations indicated here; FFDI90 is higher during

higher N34 SSTs and positive IOD and negative SAM at most stations.

For the one-season-lag case (i.e. DJF FFDI90 stratified by SON climate modes, Fig 9),

ENSO and IOD produce the strongest differences. In the western and southern portions of the

country, IOD produces the largest differences in FFDI90 between positive and negative phases.

Further, at many stations the overall highest values are often found during years with positive

IOD. ENSO produces similar differences at most stations, but these are only statistically signif-

icant at a few stations. A lagged SAM effect is apparent at many stations in the southeast, but

only significant at Melbourne.

We have examined the effects of JJA climate variables lagged into DJF (two seasons; shown

in S13 Fig). In this case, there are strong differences associated with ENSO across the southern

and eastern parts of the country (Sydney excluded). At Adelaide, Perth, Alice Springs and

Hobart, significant differences are seen with IOD. At Sydney, positive SAM in JJA results in

higher DJF FFDI90 compared to negative SAM, reflecting the complexity of the SAM-rainfall

relationship in Australia.

Partial correlations

Interdependence of predictors seasonally. The seasonal interdependence between the

climate drivers emphasises the need for a partial correlation analysis so that the individual
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effect of each driver on FFDI can be estimated. Table 3 presents the seasonal correlations

between the different climate factors. Positive IOD and El Niño are often concurrent, with

roughly 70% of positive IOD events occurring simultaneously with El Nino [38]. This is

reflected in the statistically significant correlation values between DMI and N34 during the rel-

evant seasons (JJA, SON). The relationship is particularly pronounced during SON. These

results are similar to those reported by [23] for the 1979–2008 period.

Fig 10. Subjectively produced regions in a) autumn (March to May), b) winter (June to August), c) spring (September to November) and d) summer

(December to February) with statistically significant partial correlation (p>0.05) between 90th percentile FFDI and climate drivers at 39 stations grouped in

spatially coherent patterns 1972/73 to 2016/17. ENSO (N34) is orange, SAM (SAM) is green and IOD (DMI) is blue.

https://doi.org/10.1371/journal.pone.0222328.g010
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The SAM is not significantly correlated with the other climate indices examined here

(Table 3). While this suggests little effect, previous studies have indicated that negative SAM is

dominant during El Niño events and positive SAM preferentially occurs during La Niña events

[39,40] during austral spring and summer. However, this relationship is dependent on the

amplitude of ENSO; during weaker or neutral cases, the relationship disappears. This is consis-

tent with the weak negative correlations (|r| ~0.15–0.25) during SON and DJF. Significant

interactions between SAM, ENSO and Australian rainfall, particularly during SON and DJF,

have also been documented [41,42].

Fig 11. Subjectively produced regions with one season lag relationship between summer 90th percentile FFDI and spring climate drivers with

statistically significant partial correlation (p>0.05) at 39 stations grouped in spatially coherent patterns 1972/73 to 2016/17. ENSO (N34) is orange,

SAM (SAM) is green and IOD (DMI) is blue.

https://doi.org/10.1371/journal.pone.0222328.g011
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Concurrent seasons. The interactions between climate drivers along with their combined

effects on weather are complex. However, it is still useful to have an approximate indication of

their relative influences in different places and seasons [9]. Calculating partial correlations

reveals the relative influences of the different drivers independent of the combined effects in

each location and season, along with lag seasons and in some cases, there is more than one

driver dominating. The broad regions influenced by the particular region have been grouped

together for concurrent seasons in Fig 10 and Fig 11 for lag seasons. These groupings should

only be interpreted as qualitative, with maps of the correlation coefficients available in Sup-

porting Information (S8–S18 Figs).

During MAM, SAM dominates the inland stations of NT, SA WA, while N34 has a signifi-

cant relationship with two stations in the south east of NSW/ACT (Fig 10A). IOD is not

included in these analyses because the phase does not generally exist in that season.

During JJA, N34 dominates in central NT, northern TAS and most of NSW (Fig 10B). SAM

dominates across NSW, inland NT and QLD and some coastal QLD stations. IOD dominates

in southern WA and SA and also in northern NT and QLD. The result for the full correlations

between JJA N34 and JJA FFDI90 is strong and significant whereas this relationship is reduced

when the effects of the other climate drivers are removed. In most regions, the relationship

between IOD and FFDI is positive. However, in parts of NSW there is a negative relationship

between FFDI and IOD in the partial correlations. This indicates that the other climate drivers

(mostly ENSO) play a major role in controlling the relationship between IOD and FFDI. This

finding is also supported by previous work that shows enhanced rainfall during a positive IOD

(see[43]).

During SON, N34 has a positive relationship with FFDI90, dominating the northern and

central east coast across to inland western Australia. SAM has a negative relationship with

FFDI90 and is also a dominant driver across QLD but extends to the whole of NSW. IOD has

a weak negative relationship in two coastal stations in the east, although the ENSO effect is

stronger. IOD has a positive relationship with FFDI90 and dominant in TAS across to Ade-

laide in SA (Fig 10C). In VIC, IOD and N34 are separately significantly correlated with

FFDI90 but without the combined effect neither of the variables are statistically significant.

In DJF, N34 is the dominant driver of fire weather for most of the coastal stations; excep-

tions include some WA stations, some NSW stations and all of the SA stations (Fig 10D). N34

also dominates the inland stations in QLD and WA. SAM is the dominant driver of FFDI90

for the NSW stations extending into a central QLD.

Lag relationships. When the one-season lag effect of SON climate drivers on DJF FFDI90

is considered (Fig 11), N34 dominates most of NSW, QLD, VIC and central WA, while SAM

is the dominant driver of fire weather in the south extending from WA through to VIC, SA

and TAS. For the WA stations, the full correlation results with DMI and N34 are significantly

correlated separately for many stations. However, when considered independently the statisti-

cally significant correlations largely disappear, with only Kalgoorlie and Meekatharra main-

taining weak relationships with N34. This suggests that the two variables occurring

simultaneously is particularly important. Further, in parts of NSW the relationship between

the DMI and FFDI90 is not significant however when the effects of the other climate drivers

are removed the relationship of DMI in this region becomes negative.

When a two-season lag is considered for DJF FFDI90 (with JJA climate drivers) the domi-

nant driver of fire weather is N34 in NSW/ACT, NT and QLD and this has been strengthened

following the removal of the effects of SAM and DMI. N34 also still dominates in WA but this

is less widespread for partial correlations (refer to Figs of partial correlations in S8–S18 Figs).

For the one-season lag effect on SON FFDI90 from the JJA climate drivers, N34 still domi-

nates in NSW/ACT for most stations with a significant relationship with IOD still evident for
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Cobar, Coffs Harbour and Moree. N34 also dominates in NT and also in QLD although IOD

has been strengthened for some stations. The effect of N34 in VIC has again been reduced by

the removal of the effect of the other drivers (refer to S8–S18 Figs).

Trends and variability

Fire weather. The time series of annual FFDI90 are characterised by a significant amount

of interannual variability and a general upward trend, both at individual stations and in the

all-station mean (Fig 12). There is a considerable degree of coherence between the stations in

these signals. Judging from the fire weather time series, the fire seasons of 1973–74 and 2010–

11 are the two mildest seasons over the past several decades. These periods are the wettest on

record for Australia and coincid with moderate to strong La Niña events (see [44]). Since the

early 2000s, the multi-station mean shows that most years have had higher-than-average fire

weather, with the most severe season being 2002–03. This season coincided with major rainfall

deficiencies and exceptionally warm conditions across most of Australia, and a weak to moder-

ate El Niño event (see [45]). Individually all stations have a positive annual trend for FFDI90

except for Brisbane Airport. This negative annual trend occurs due to negative trends in

Fig 12. Time series of 90th percentile FFDI annual anomaly (July-June) at each station (1973–2017). The thick line indicates the multi-station mean. The thick

dotted line indicates the linear trend.

https://doi.org/10.1371/journal.pone.0222328.g012
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FFDI90 in both summer and autumn and is not statistically significant, also found by [4]. For

the all-station average, the standardized trend is 0.24±0.13 per decade, equivalent to 0.96±0.52

points per decade using the average value of standard deviation (4.01) across all stations. The

use of the standardized trend results in a decrease of 7% in trend magnitude and a decrease of

Fig 13. Map of trends in seasonal 90th percentile FFDI. Marker size is proportional to the magnitude of trend. Reference sizes are shown in the legend. Filled markers

represent trends that are statistically significant. Red indicates an upward trend and blue indicates a downward trend.

https://doi.org/10.1371/journal.pone.0222328.g013
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15% in the size of the confidence intervals compared to the non-standardized values. In either

case, these results represent a continuation of the trends (in the same variables) identified by

[4]; the overall annual trend values have lessened and this is most likely due to the very mild

2010–11 period, but the general upward trend remains statistically significant.

The trend magnitudes vary in both a spatial and seasonal sense (Fig 13 and Table 4). Trends

are strongest and most widespread during the spring (SON), encompassing much of southern

Table 4. Values of seasonal FFDI90 and FFDI50 trends from 1973–2017 (2018 for DJF). Trends (top row of each cell) in points per decade. 2nd column of each cell rep-

resents the 2-sigma confidence interval. Trends significant at 95% level (greater than 2-σ CI) are in bold; values in italics are significant at ~90% level (1.65�CI).

Site DJF

FFDI90

MAM

FFDI90

JJA

FFDI90

SON

FFDI90

ANNUAL

FFDI90

Adelaide 2.64 ± 1.43 1.55 ± 1.49 0.15 ± 0.55 1.90 ± 1.52 1.88 ± 0.97

Albany -0.20 ± 0.58 0.22 ± 0.60 0.26 ± 0.18 0.44 ± 0.31 0.04 ± 0.35

Alice Springs 0.67 ± 2.25 1.95 ± 3.23 1.53 ± 1.67 2.84 ± 2.72 1.40 ± 2.15

Amberley 0.71 ± 1.13 0.63 ± 1.03 1.41 ± 1.46 1.71 ± 2.14 1.00 ± 1.63

Brisbane -0.26 ± 0.57 -0.19 ± 0.53 0.17 ± 0.94 -1.00 ± 1.40 -0.56 ± 0.43

Broome -0.27 ± 0.61 0.69 ± 1.40 2.22 ± 0.99 0.34 ± 1.91 0.99 ± 0.97

Cairns 0.18 ± 0.79 0.93 ± 0.55 0.53 ± 0.45 0.56 ± 0.54 0.59 ± 0.35

Canberra 0.19 ± 2.28 0.79 ± 1.73 0.20 ± 0.49 1.27 ± 1.96 0.33 ± 1.67

Carnarvon 0.01 ± 0.84 0.91 ± 1.12 1.69 ± 1.04 0.51 ± 1.04 0.76 ± 0.56

Ceduna 1.08 ± 2.00 1.39 ± 2.19 0.11 ± 1.47 3.57 ± 2.82 1.20 ± 1.39
Charleville -0.49 ± 2.44 1.08 ± 1.80 1.56 ± 1.47 2.26 ± 2.34 0.53 ± 1.44

Cobar 2.65 ± 2.37 0.89 ± 1.63 1.34 ± 1.26 3.13 ± 2.38 2.42 ± 1.62

Coffs Harbour 0.35 ± 0.50 0.26 ± 0.35 0.02 ± 0.60 0.17 ± 0.53 0.20 ± 0.39

Darwin 0.06 ± 0.49 0.36 ± 1.01 1.05 ± 0.79 0.36 ± 1.00 0.49 ± 0.54
Dubbo 3.24 ± 1.95 0.87 ± 1.41 0.49 ± 0.86 2.28 ± 2.70 1.86 ± 1.33

Esperance -0.18 ± 0.67 0.40 ± 1.08 0.48 ± 0.63 0.47 ± 0.51 0.11 ± 0.37

Geraldton -0.65 ± 1.95 1.25 ± 2.02 1.47 ± 1.24 1.35 ± 1.93 1.10 ± 1.05

Hobart 0.41 ± 0.67 0.84 ± 0.59 0.32 ± 0.28 0.66 ± 0.47 0.52 ± 0.35

Kalgoorlie 1.06 ± 1.56 0.53 ± 1.74 1.51 ± 1.48 2.32 ± 2.16 1.07 ± 1.21
Launceston 0.45 ± 0.94 0.64 ± 0.53 0.11 ± 0.15 0.50 ± 0.45 0.47 ± 0.53
Laverton 1.01 ± 1.71 0.11 ± 0.85 0.01 ± 0.47 1.71 ± 1.33 0.48 ± 1.01

Mackay 0.31 ± 0.38 0.32 ± 0.31 0.02 ± 0.30 0.10 ± 0.30 0.17 ± 0.25

Meekatharra 0.58 ± 1.58 -0.38 ± 1.81 1.82 ± 1.57 2.44 ± 1.86 1.05 ± 1.46

Melbourne 1.72 ± 1.84 0.83 ± 1.48 0.49 ± 0.50 2.66 ± 1.59 1.20 ± 1.19

Mildura 3.20 ± 2.37 1.58 ± 1.54 0.62 ± 0.93 4.31 ± 2.22 2.63 ± 1.87

Moree 1.67 ± 2.10 0.71 ± 1.47 1.73 ± 1.13 2.88 ± 2.30 1.69 ± 1.41

Mt Gambier 0.74 ± 1.87 0.80 ± 0.94 0.01 ± 0.14 1.10 ± 0.87 0.71 ± 0.67

Mt Isa 0.30 ± 3.01 1.17 ± 2.26 1.14 ± 1.01 1.11 ± 1.91 0.93 ± 1.77

Nowra -0.01 ± 1.53 0.68 ± 0.82 0.37 ± 0.72 1.94 ± 1.83 0.67 ± 0.66

Perth 1.17 ± 1.03 1.16 ± 1.21 0.99 ± 0.48 1.93 ± 0.95 1.09 ± 0.88

Port Hedland -0.91 ± 2.51 0.57 ± 1.63 1.04 ± 1.25 0.72 ± 1.66 0.53 ± 1.14

Rockhampton 0.95 ± 0.92 0.97 ± 1.27 1.48 ± 1.15 1.90 ± 2.00 1.25 ± 0.68

East Sale -0.20 ± 1.49 0.78 ± 0.81 0.48 ± 0.51 1.10 ± 1.04 0.61 ± 0.71
Sydney 0.57 ± 0.97 0.46 ± 0.77 0.43 ± 0.82 2.46 ± 1.70 0.79 ± 0.63

Tenant Creek -1.35 ± 2.28 0.33 ± 2.74 0.52 ± 0.96 0.85 ± 2.13 0.16 ± 1.92

Townsville 0.34 ± 0.67 0.65 ± 0.79 -0.11 ± 0.88 0.07 ± 0.91 0.14 ± 0.55

Wagga Wagga 2.00 ± 2.56 0.73 ± 1.74 0.19 ± 0.43 2.63 ± 2.31 1.36 ± 1.71

Williamtown 0.44 ± 1.24 0.12 ± 0.86 0.69 ± 1.01 2.19 ± 1.85 0.75 ± 0.75

Woomera 3.47 ± 1.61 1.83 ± 1.51 1.78 ± 1.54 4.68 ± 3.06 3.13 ± 1.70

https://doi.org/10.1371/journal.pone.0222328.t004
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Australia. Further north, weaker but statistically significant trends are identified during JJA.

Taken together, these trends imply an earlier start to the local fire season. Overall, the strongest

changes are occurring during the earlier parts of the fire season. During DJF, strong positive

trends are largely confined to a regional area of eastern SA, western NSW and northwest Vic-

toria. Trends are larger in other parts further east, but only significant at the 90% level. During

MAM, the same regions reveal statistically significant trends, but these are weaker compared

to spring as was also found previously [3,4].

Climate drivers. Trends for seasonal climate driver indices were also examined (Table 5).

Trend in SAM is significant in DJF (p<0.05), and less significant in MAM (p<0.10), it is also

Table 5. The trend for seasonal climate driver indices (SAM, NINO3.4 (N34) and IOD (DMI)) for 1973-2016/17. Trends in bold indicate significance p<0.05 and in

italics indicate p<0.10.

DJF MAM JJA SON

SAM 0.40 ± 0.30 0.27 ± 0.28 0.21 ± 0.35 0.01 ± 0.36

N34 0.01 ± 0.29 0.11 ± 0.19 0.14 ± 0.17 0.13 ± 0.27

DMI 0.03 ± 0.05 0.05 ± 0.05 0.05 ± 0.08 0.11 ± 0.12

https://doi.org/10.1371/journal.pone.0222328.t005

Fig 14. Annual all station average FFDI90 as in Fig 3 (thick red) and with effects of individual climate drivers removed (thick purple). The individual effects of N34

(cyan); IOD (orange) and SAM (green) are shown as thin lines. Vertical dotted lines indicate the transition points between the phases of the Interdecadal Pacific

Oscillation during the period of record as identified by the Henley et al (2015) dataset.

https://doi.org/10.1371/journal.pone.0222328.g014
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relatively strong in JJA, but this is not statistically significant. Trends in N34 are not statistically

significant for any seasons. For DMI, there is a less significant trend during SON. These find-

ings are supported by existing literature that have found an increase in the positive phase of

SAM [36] and there are no studies identifying a trend in ENSO or IOD so far, although an

increase in the frequency of El Niño events and positive IOD events due to anthropogenic

global warming has been hypothesized for the future [46,47].

Influence of climate driver trends on fire weather trends. To determine if the trends in

climate drivers are influencing the identified fire weather trends we use partial regression to

estimate the effect of each climate driver (during SON and DJF, the most influential seasons)

on the ’all-stations’ average annual FFDI90, reproduced as the thick red line in Fig 14. The esti-

mated effects of each driver are shown as the thin lines in Fig 14, with the thicker purple line

representing the average FFDI90 adjusted to remove the effects of the climate drivers. If the

total trend were an artefact of the apparent underlying trends in the climate drivers, the purple

line should lie close to the zero-anomaly line throughout; however, it does not. Trends in the

climate drivers (Table 5) do explain some of the overall trends, with the total standardized

trend reduced by 27% to 0.18 ± 0.11 points/decade. Trends in FFDI due to N34 and the DMI

are 0.06 ± 0.09 and 0.02 ± 0.03 points/decade, respectively. SAM acts in the opposite direction

with a negative trend, with a value of -0.02 ± 0.05 points/decade. A limitation of this approach

is the inadequacy of the linear regression models applied here, particularly in the more extreme

excursions (e.g. 1973/4 or 2010/11) from La Niña and that the influence of lag relationship is

not considered. The teleconnection effects of the ENSO cycle may be non-linear [48,49] and

the linear model applied here may not sufficiently capture the effects of the climate drivers,

particularly at the extremes, where an asymmetrical response between El Nino and La Nina

has been previously reported [50]. Regardless, the trends in climate drivers appear to fall well

short of explaining the overall trend in FFDI.

Discussion

The results presented in this study allow for a greater understanding of the drivers of Austra-

lian fire weather variability over the previous 45 years as quantified through the FFDI. This

variability of fire weather is driven in part by complex interactions between major Australia

climate drivers–ENSO, IOD and SAM–and superposed on an increasing background trend

that is present nationally, but strongest across Southern Australia. We will discuss these drivers

more completely in this section.

Interannual variability

Not surprisingly, ENSO is the dominant driver of fire weather variability; this result is consis-

tent with previous studies [3,22] and with its known global impact. ENSO is the most spatially

widespread driver and affects most of the Australian continent to some degree, although the

signal is clearly stronger in the central and eastern portions of the country. These impacts are

obvious during the winter (JJA), spring (SON) and summer (DJF), and are often lagged; what

happens early in the ENSO cycle persists through the seasons.

The IOD plays a significant role primarily in southern Australia. During JJA, the strongest

correlations are in southern and central WA; as the season shifts to spring (SON), the strongest

correlations move into south-eastern Australia. These results are similar to those of [51] who

found similar seasonal variations for the IOD influence on fire weather in Australia. Generally

weak correlations with IOD are also noted at several stations in northern Australia during

both JJA and SON.
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SAM demonstrates widespread correlations across much of the country, depending on the

season. The correlation is generally negative, meaning that when SAM is persistently in its neg-

ative phase then FFDI is higher. While present across the country, this relationship is most

prominent across eastern Australia; the strongest relationships centred on NSW during SON

and DJF. The interior portions of the country (e.g. Mt Isa, Tennant Creek, Alice Springs, Kal-

goorlie), show moderate correlations during MAM. A significant one-season lag correlation

with SON SAM is also observed in parts of SA, VIC and TAS.

We suggest the different modes of variability examined here act to modulate the fire-

weather climate primarily through changes in the location and timing of rainfall. An explana-

tion for the impact may be through changes in the number of rain days and to a lesser degree,

the rainfall intensity per rain day [52]. These effects on rainfall subsequently flow through to

other weather variables that affect FFDI. To first order, lower-than-average rainfall can be

linked to a reduction in cloudiness, increased insolation, relatively more sensible heating and

less evaporation, all of which lead to higher daytime temperatures [53]. Similarly, atmospheric

humidity as measured by the dewpoint on average is lower when rainfall anomalies are nega-

tive [54]. Combined with higher temperatures, this will lead to lower average values of relative

humidity. Both higher temperatures and lower rainfall also increase the KBDI and drought fac-

tor [28]. These factors are all directly related to an increasing FFDI.

Spatially, the impacts of each climate mode on rainfall in Australia compare well with the

correlations of those modes with 90th percentile FFDI. The strongest rainfall impacts of ENSO

are primarily in eastern Australia (see [9]). For IOD, the rainfall impacts are particularly strong

in central Australia, VIC and TAS (see [9]), but also extend to other regions. For SAM, the

rainfall response is complex, with higher-than-normal rainfall during the positive phase during

SON across much of NSW, while in other seasons (e.g. JJA) the positive phase brings dry

anomalies to much of southern Australia [8]. However, in this study we did not see the effect

of the positive phase of SAM resulting in a statistically significant positive relationship with

FFDI, with the exception of Hobart in JJA.

Temporally, ENSO is the most persistent of these phenomena. Significant SST anomalies

from ENSO generally arise in late-autumn and winter, strengthen into the spring and fully

mature in summer, after which they generally rapidly decay [11]. On average, the IOD has a

shorter cycle, typically developing in winter (JJA), peaking in spring and rapidly decaying dur-

ing November and December [12]. However, the IOD is not as persistent over the course of a

given year and events can often terminate early or begin later depending on the interactions

between the ENSO-forced dynamics and internal variability [55]. While SAM decorrelates on

1-2-week time scales, an overall preference for either a positive or negative state can persist

over extended periods; there is no seasonal locking of the SAM phase, although the circulation

can amplify into the stratosphere during late-spring [56].

These spatial and temporal tendencies of climate modes combine to help explain the behav-

iour of the fire weather. From the analyses, the largest modulation of fire weather by the cli-

mate modes examined here occurs in eastern and south-eastern Australia, although much of

Australia is affected to some degree. The key time of year for this influence is spring (SON),

and to a lesser extent winter (JJA). Further work should focus on three-monthly moving aver-

ages to capture intra-seasonal relationships rather than focusing only on fixed seasons.

We suggest ENSO, and its extended time scale, set up the peak fire season, either directly or

through the creation of favourable conditions for other climate modes to occur (i.e. correla-

tions between different modes). Once established, the phase of ENSO sets a clear difference for

the severity of the fire weather during the fire season. In the central and eastern parts of the

country, differences between El Niño-like and La Niña-like conditions are large, persistent,

and generally statistically significant. The phase of ENSO in JJA shows a widespread
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correlation with DJF FFDI90. The higher temperatures and reduced rainfall seen during El

Niño-like conditions lets the drought factor build and increase the FFDI; as noted in [5],

extended drought (at least 4–6 weeks) is a necessary requirement for the highest FFDI days to

occur.

Regional differences in the dominant drivers of interannual variability. While ENSO is

the primary precursor to extreme fire weather, the severity of any given fire season is further

modulated by the IOD and/or the SAM. In some locations and seasons, these other sources of

climate modulation are the primary driver, predominating over the ENSO effect. These effects

vary depending on the region considered and the timing of the events. Where these other

modes dominate was shown in Section 3.3 and Figs 10 and 11. In Summary:

NSW Central Coast. SAM is the dominant driver of fire weather in NSW during SON and

DJF, with a negative SAM leading to an increase in FFDI, although the influence of ENSO

remains strong in the region. The composite difference between positive and negative SAM is

larger than that between the extremes of the ENSO3.4 SSTs. The central coast of NSW, as rep-

resented by Sydney and Williamtown in this dataset, is strongly affected. The years 1980, 2002

and 2013 are among the highest spring FFDI90 seasons in the region, and all characterised by

strong negative SAM between July and November; only 2002 has a high ENSO3.4 SST. While

there are few studies on fire and SAM for this region this strong relationship between FFDI

and SAM corresponds with [9], finding of increase in rainfall associated with a positive SAM

phase.

VIC and southern SA. All the climate modes examined here have some effect in this

region, and a strong lag effect is observed. The FFDI90 during the peak fire season (DJF) is

only weakly correlated with the concurrent climate variables; the strongest effect is seen with

the SON variables. The results suggest higher ENSO3.4 SSTs in the spring set the stage for

more extreme fire weather conditions during DJF in the region. This was also suggested in

[21], who showed a relationship between spring ENSO indices and fire season fire activity.

These conditions are exacerbated when a positive IOD is concurrently observed during spring,

following [23]. This is indicated by the composite positive IOD FFDI90 values that are slightly

higher compared to the highest composite ENSO values at Adelaide and Melbourne. Further,

at Adelaide, the differences between positive and negative phases are only statistically signifi-

cant with the IOD comparison. A negative lagged correlation with SAM is also identified in

this region; the differences in DJF FFDI90 between positive and negative SAM in SON are

only significant at Melbourne Airport station but show the same tendencies at Adelaide.

TAS. Similar to VIC and southern SA, all the climate modes examined here have some

effect in this region. ENSO and IOD are dominant in winter and spring and the influence of

ENSO continues into summer in the north of the state. These climate drivers also have a per-

sistent effect from spring into summer. This corresponds with findings by [19] who identified

a relationship between ENSO indices and fire activity in Tasmania. The influence of SAM is

variable, with a positive relationship in winter and a negative effect in spring, this effect can be

explained by rainfall variability as shown in [9]. Additionally, a negative lag relationship

between spring SAM and summer FFDI is evident. However, these results differ to those

found by [25] that suggests that the positive phase of SAM is related to increased fire activity

One explanation for this discrepancy in findings is the different scope and methods used by

[25], which focused on centennial scale charcoal records in western TAS and the phase of

SAM over the preceding year. Our dataset lacks a high-quality station over western TAS,

which has a different response to the climate drivers [9] and a different fire-weather climate

[57] due to the orography in central TAS. Tasmania is complex, and further work on fire

weather and fire activity there over varying temporal and spatial scales in relation to SAM and

the other climate drivers should be pursued.
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Southern WA. Further west, the correlations of FFDI90 and ENSO are weaker (and often

not significant) in comparison to the eastern states, but still act in the same sense; lagged corre-

lations are generally (slightly) stronger that the concurrent ones. The most significant correla-

tions are with IOD, and this appears to be the dominant effect during JJA. The composite

analysis from Perth reinforces these differences between positive and negative phases of IOD

in SON and extending into DJF; the other climate modes examined apparently have minimal

differences. This mixed result somewhat agrees with the findings of [9] that shows a mix of cli-

mate drivers dominating rainfall variability in southern WA in winter and spring.

Northern Australia. The correlations for Northern Australia are more difficult to interpret

due to the fuel-limited fire regime there. In much of this region, the peak fire season is during

JJA and SON and ends during DJF with the arrival of the monsoon/wet season. During these

seasons, conditions are broadly favourable for fire, which is widespread. As noted earlier, the

use of FFDI does not fully capture that relationship; it does capture the general severity of fire

weather without taking fuel considerations into effect. Across much of QLD and NT, ENSO

shows the strongest correlations at many locations. These are weaker and more spatially lim-

ited in JJA, but during SON the positive correlations are widespread across QLD and NT, and

they extend into northern WA during DJF. A long lead time relationship (12+ months)

between ENSO and fire activity has been identified. La Niña-like years bring enhanced rainfall,

subsequently increasing fuel load and fire occurrence [18]. Negative correlations with SAM

are observed mostly in QLD during SON. Cairns, Darwin and northern WA show some signif-

icant correlations with IOD, at both concurrent and lagged times. One interpretation of the

DJF results for ENSO is that the positive correlations reflect a delayed onset on the Australian

monsoon that often accompanies El Niño [58]. We suggest further work should consider anal-

yses of the role of the Madden Julian Oscillation on fire weather variability, as this sub-seasonal

climate driver plays a role in the timing of the monsoon and therefore rainfall variability in

northern Australia [59].

Long term variability. In addition to the regional and interannual variability described

earlier in the paper, there is clearly a long-term increase in fire weather over the 1973–2017

period examined in this study, as noted in [4] using earlier versions of the same dataset. As an

all station average, the trend in standardized annual FFDI90 is positive and statistically signifi-

cant at 0.24±0.13 points/decade (Figs 2 and 14). The trends in FFDI from the gridded FFDI

dataset derived from [3] and shown in [26], although derived independently and covering a

different time period, are in general agreement with those presented in this work. Spatially, the

trends are positive across the continent and are observed during most seasons. Considered

more carefully, the largest changes are occurring during spring and in the southern half of

Australia. We assessed whether the apparent trend is primarily due any changes to the under-

lying climate drivers that influence fire weather; and found the trends in climate drivers appear

to fall well short of explaining the overall trend. Therefore, the trends are examined in two dif-

ferent contexts:

1. The trend is primarily due to some natural decadal variability not explicitly considered

here, mostly the IPO mentioned in the Introduction; and

2. The trend is a consequence of anthropogenic climate change resulting from the ~45%

increase in greenhouse gas concentrations since the late-19th century [60].

In the first context, we consider decadal variability. A leading theory for understanding

decadal variability of the climate is the Interdecadal Pacific Oscillation (IPO), the global mani-

festation of the northern hemisphere-only Pacific Decadal Oscillation [61]. Its associated SST

pattern is similar to that of ENSO, but with a stronger signal in the extratropics [62]. Emerging
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evidence indicates that the IPO may influence the frequency of ENSO events, with three times

more El Niño events during the positive phase, while La Niña is more prevalent during the

negative phase [63]. Studies suggest that the rate of warming of the global mean surface tem-

perature is faster during positive (El Niño-like) phases of the IPO [64,65]. Palmer et al. [66]

suggest that it modulates drought in eastern Australia, with droughts more common during

the positive phase, although they note this pattern has been broken over the most recent cycle.

During the period examined here, only one cycle of the IPO has occurred, with the transitions

identified from [67] marked on Fig 14. The IPO phase transitions do vaguely line up with the

large changes in the all-station average annual FFDI90, with apparent decadal changes in the

data circa 1980 and 2002. If the IPO were the main driving factor, then an ’oscillation’ in

FFDI90 would be expected, with an increase during the transition to the positive phase around

1978 and a decrease with the transition to the negative phase in 1998 as conditions became

more La Niña-like and drought becomes less prevalent. The tendency of annual FFDI90 in Fig

14 does not correspond with the timing of the transitions, nor does the expected direction of

the changes. Reliable records of fire weather that extend to periods before the 1970s are rare;

one such record (for annual cumulative FFDI) from Canberra extending back to 1942 was pre-

sented in [17]. This time series suggests some variability on 10–20 years timescales (not shown

here) but does not match this pattern or any of the other transition period. Together, these

data suggest that the IPO is not a likely explanation for the changes that have been observed.

There may well be decadal variability, but its source remains unclear.

The second context is that of anthropogenic climate change. The enhancement of green-

house gases (GHGs) has been clearly linked to increased global temperatures and more fre-

quent extreme temperatures, with Australia being no exception [60]. Climate projections for

the 21st century unambiguously indicate higher fire weather for many parts of Australia [68].

By themselves, warmer average temperatures suggest increased fire weather. In addition to ris-

ing temperatures, changes to the large-scale mean meridional circulation and an expansion of

the tropical belt driven in part by increasing GHGs [69] provide a possible mechanism for a

long-term increases in fire weather, particularly in southern Australia. This poleward shift in

the downward branch of the Hadley Cell changes large-scale rainfall patterns, generally drying

the regions between 30 and 40˚ latitude. In the Southern Hemisphere, statistically significant

tropical expansion from GHGs has been occurring from at least the late-1960s [70] with the

greatest regional expansion over the Australia-East Asia corridor [71–73]. These expected

changes in rainfall have similarities with patterns shown in observations [26]. Both warmer

days and decreased southern rainfall should result in enhanced fire weather, in line with trends

in fire weather (Fig 12); in northern Australia, trends are smaller or neutral, consistent with

enhanced rainfall. The observed trends to date have generally been in excess of those projected

from modelling studies [2,17,68,74].

This discussion here strongly points to anthropogenic climate change as one of the major

causes of long-term variability in fire weather in Australia, particularly in the southern por-

tions of the continent, consistent with conclusions based on gridded data throughout Australia

[3] complementary to the approach of this study based on station data. However, this is not an

attribution study, and the evidence presented here remains circumstantial. A formal attribu-

tion study of FFDI in southeastern Australia presented by [75] did indicate that an anthropo-

genic climate signal was detectable in the FFDI record, while [76] are less clear about the link.

As suggested here, the magnitude of the anthropogenic signal in [75] was smaller than the

swings suggested by ENSO. We also note that anthropogenic climate change may also impact

fire weather indirectly, for example by modifying the underlying climate drivers. For example,

a future increase in the frequency of El Niño events and positive IOD events [46,47] as well as

increasing positive polarity of the SAM index [77] have all been suggested under global
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warming scenarios. Additionally, a recent study by [78] found that the trend and variability of

Southern Hemisphere climate modes are (amongst others) being driven by climate change.

The dynamics of global warming and its interactions with modes of interannual and decadal

variability and its effect on fire weather in Australia remain uncertain.

Summary and conclusion

This study explores the interannual and long-term variability of Australian fire weather. This

is achieved through the analyses of the trends and variability of the seasonal 90th percentile

FFDI and ENSO, SAM and IOD and the relationship between these variables for 39 stations

across Australia. Our key conclusions are:

• The Australian fire-weather climate shows a large degree of interannual variability and we

hypothesise this is largely associated with the modulation of rainfall over the region.

• Spring (SON) is the season with the strongest correlations between 90th percentile FFDI and

the large-scale climate drivers for most regions.

• For much of the country, ENSO is the key driver for interannual variability. Seasons with

higher NINO3.4 SSTs (i.e. El Niño-like) have more intense fire weather, while seasons with

lower NINO3.4 SSTs (i.e. La Niña-like) can greatly reduce the fire weather danger. ENSO

has the most impact in eastern and northern Australia. There are subtle differences in how

the rest of the country is affected by these climate modes.

• The influence of IOD further modulates the fire weather on top of the ENSO signal. A posi-

tive IOD phase exacerbates effects of higher NINO 3.4 SST values. These often occur

together (but not always). The largest effect is found in southeastern Australia.

• Negative SAM in SON can also enhance the effect of higher NINO3.4 SSTs but can also act

independently (i.e. during lower NINO3.4 SSTs years), particularly in central coastal NSW.

• There is also a long-term upward trend in fire weather with the strongest trend found in

southern Australia, in spring.

• This long-term trend is likely mostly due to anthropogenic climate change, rather than the

influence of the IPO or the occurrence of congruent trends.

• Interannual changes are larger in magnitude that the longer-term changes that have

occurred to date. Hence, the long-term signal can easily be overcome and result in a strong

negative deviation from the general trend. An example of this is seen in the 2010–12 period,

where a strong La Niña brought less intense fire weather to most of the country.

Understanding the interactions between climate drivers and Australian fire weather is a

step towards improved seasonal forecasts of fire weather, potentially resulting in more effective

fire planning and resource management. Furthermore, accepting that anthropogenic climate

change is the most likely cause of the upward trend of fire weather in some parts of Australia

will enable policy makers to make longer term decisions around managing fires in a changing

climate.
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S2 Table. Years of the top and bottom 9 values of each index separated by season.

(PDF)

S1 Fig. Correlation coefficient values multiplied by 100 calculated for SON 90th percentile

FFDI and the preceding a. JJA NINO3.4 (one-season lag) b. MAM NINO3.4 (two-season lag).

Significance greater than 99% in red, 95% in magenta and 90% green.

(PDF)

S2 Fig. Correlation coefficient values multiplied by 100 calculated for JJA 90th percentile FFDI

and the preceding a. MAM NINO3.4 (one-season lag) b. DJF NINO3.4 (two-season lag). Sig-

nificance greater than 99% in red, 95% in magenta and 90% green.

(PDF)

S3 Fig. Correlation coefficient values multiplied by 100 calculated for MAM 90th percentile

FFDI and the preceding a. DJF NINO3.4 (one-season lag) b. SON NINO3.4 (two-season lag).

Significance greater than 99% in red, 95% in magenta and 90% green.

(PDF)

S4 Fig. Correlation coefficient values multiplied by 100 calculated for SON 90th percentile

FFDI and the preceding JJA DMI (one season lag) (1972–2017). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)

S5 Fig. Correlation coefficient values multiplied by 100 calculated for SON 90th percentile

FFDI and the preceding a. JJA SAM (one-season lag) b. MAM SAM (two-season lag) c. DJF

90th percentile FFDI and the preceding JJA SAM (two-season lag). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)

S6 Fig. Correlation coefficient values multiplied by 100 calculated for JJA 90th percentile

FFDI and the preceding MAM SAM (one season lag) (1972–2017). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)

S7 Fig. Correlation coefficient values multiplied by 100 calculated for MAM 90th percentile

FFDI and the preceding DJF SAM (one season lag) (1972–2017). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)

S8 Fig. Partial correlation coefficient values multiplied by 100 for DJF 90th percentile FFDI

and a. DJF NINO3.4 b. DJF SAM (no season lag) (1972–2017). Significance greater than 99%

in red, 95% in magenta and 90% green.

(PDF)

S9 Fig. Partial correlation coefficient values multiplied by 100 for DJF 90th percentile FFDI

and a. SON NINO3.4 b. SON SAM c. SON IOD (one season lag) (1972–2017). Significance

greater than 99% in red, 95% in magenta and 90% green.

(PDF)

S10 Fig. Partial correlation coefficient values multiplied by 100 for SON 90th percentile FFDI

and a. SON NINO3.4 b. SON SAM c. SON IOD (no season lag) (1972–2017). Significance

greater than 99% in red, 95% in magenta and 90% green.

(PDF)
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S11 Fig. Partial correlation coefficient values multiplied by 100 for JJA 90th percentile FFDI

and a. JJA NINO3.4 b. JJA SAM c. JJA IOD (no season lag) (1972–2017). Significance greater

than 99% in red, 95% in magenta and 90% green.

(PDF)

S12 Fig. Partial correlation coefficient values multiplied by 100 for MAM 90th percentile FFDI

and a. MAM NINO3.4 b. MAM SAM (no season lag) (1972–2017). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)

S13 Fig. Partial correlation coefficient values multiplied by 100 for DJF 90th percentile FFDI

and a. JJA NINO3.4 b. JJA SAM c. JJA IOD (two season lag) (1972–2017). Significance greater

than 99% in red, 95% in magenta and 90% green.

(PDF)

S14 Fig. Partial correlation coefficient values multiplied by 100 for JJA 90th percentile FFDI

and a. MAM NINO3.4 b. MAM SAM (one season lag) (1972–2017). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)

S15 Fig. Partial correlation coefficient values multiplied by 100 for MAM 90th percentile FFDI

and a. DJF NINO3.4 b. DJF SAM (one season lag) (1972–2017). Significance greater than 99%

in red, 95% in magenta and 90% green.

(PDF)

S16 Fig. Partial correlation coefficient values multiplied by 100 for MAM 90th percentile FFDI

and a. SON NINO3.4 b. SON SAM SON IOD (two season lag) (1972–2017). Significance

greater than 99% in red, 95% in magenta and 90% green.

(PDF)

S17 Fig. Partial correlation coefficient values multiplied by 100 for SON 90th percentile FFDI

and a. JJA NINO3.4 b. JJA SAM c. JJA IOD (one season lag) (1972–2017). Significance greater

than 99% in red, 95% in magenta and 90% green.

(PDF)

S18 Fig. Partial correlation coefficient values multiplied by 100 for SON 90th percentile FFDI

and a. MAM NINO3.4 b. MAM SAM (two season lag) (1972–2017). Significance greater than

99% in red, 95% in magenta and 90% green.

(PDF)
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