Cover Letter

To: Committee Secretary Joint Standing Committee on Foreign Affairs, Defence and Trade Parliament House Canberra ACT 2600

Dear Committee Secretary,

Please find enclosed my complete submission for the Inquiry into Preventing Conflict.

You have permission to leave my details when published.

John Crookston JP (Qual) QLD. Fed. Lobbyist

Australian Fusion Industry

ABN:- 27 311 736 157

E: AustralianFusionIndustry@outlook.com im www.linkedin.com/in/johncrookston

Submission to the Joint Standing Committee on Foreign Affairs, Defence and Trade

Inquiry into Preventing Conflict Submitted by: John Crookston. JP (Qual.) QLD

Yours Sincerely

John Crookston JP (Qual) QLD. Fed. Lobbyist

Australian Fusion Industry

ABN:- 27 311 736 157

E: AustralianFusionIndustry@outlook.com in www.linkedin.com/in/johncrookston

Inquiry into the role of Australia's international development program in preventing conflict Submission 2

Contents

Cover Letter	1
Submission to the Joint Standing Committee on Foreign Affairs, Defence and Trade	2
Main Submission	

Main Submission

1. Executive Summary

Preventing conflict requires addressing root drivers of instability, including energy scarcity, water insecurity, climate pressure, weak governance, and unequal access to essential services. Fusion energy offers a transformative peacebuilding tool because it produces no long-lived waste, uses no fissile material, and cannot support a chain reaction (ARPANSA, 2023; IAEA, 2023a). It is therefore inherently non-weaponisable, aligning fully with regional and global non-proliferation frameworks.

Australia is positioned to strengthen peace and resilience by deploying fusion-powered microgrids, desalination, communications, and humanitarian logistics throughout fragile regions of the Indo-Pacific. These capabilities build institutional trust, human capital, and economic inclusion (DFAT, 2024; UNDP, 2023).

This submission draws from and complements earlier analyses (Crookston, 2025a, 2025b, 2025c), demonstrating how fusion energy could be strategically integrated into Australia's international development program to prevent conflict.

2. Alignment with the Terms of Reference

2.1 Building resilience in fragile states

Fusion-powered micro-grids provide continuous energy to clinics, schools, water systems, and community infrastructure. Because fusion machines require no imported fuel, they support local energy sovereignty and insulate communities from volatile international markets (EUROfusion, 2024).

Stable access to energy enhances civic participation, public trust, and human-capital development—core drivers of durable peace (DFAT, 2024; UNDP, 2023).

2.2 Strategic use in the Indo-Pacific

The Indo-Pacific faces significant vulnerability to climate disasters, supply-chain fragility, and energy insecurity. Portable fusion units—aligned with ARPANSA and IAEA safety standards—could support:

- disaster response
- emergency desalination

- remote communications
- climate resilience infrastructure
- humanitarian operations

Regional cooperation through a Fusion for Peace Indo-Pacific Partnership would reinforce non-proliferation norms while advancing Australia's diplomatic and humanitarian objectives (GO4FUSION, 2024; UKAEA, 2022).

2.3 Support in pre- and post-conflict zones

Fusion systems can be deployed quickly in reconstruction environments because they:

- cannot produce fissile material
- carry no weapons-use potential
- require minimal fuel logistics
- restore critical services immediately

This makes them ideal for stabilisation, governance restoration, and humanitarian support (IAEA, 2023b; Helion Energy, 2025).

2.4 Maintenance of peace and conflict prevention

Reliable, clean energy supports economic recovery, food security, digital connectivity, and water stability—conditions that reduce the risk of conflict (World Bank, 2024).

Shared fusion-based projects can also promote cross-border cooperation and transparency under IAEA verification, helping reduce resource-based tensions (ITER Organization, 2024).

3. International Legal and Regulatory Context

3.1 Distinction between fusion and fission

ARPANSA and the IAEA define fusion as the joining of light nuclei without a self-sustaining chain reaction (ARPANSA, 2023; IAEA, 2023b). Fusion systems therefore fall outside EPBC Act s.140A prohibitions, which apply exclusively to fission reactors using fissile fuels (DCCEEW, 2023).

Global regulators, including OECD-NEA and UKAEA, increasingly classify fusion machines under distinct regulatory pathways that treat them as non-fissile technologies (OECD-NEA, 2024).

3.2 Treaty of Rarotonga and Non-Proliferation Obligations

The Treaty of Rarotonga prohibits nuclear explosive devices, the stationing or testing of nuclear weapons, and activities involving fissile materials capable of producing a nuclear explosion.

Fusion machines do not use fissile materials, do not produce weapons-usable isotopes, and cannot create a nuclear explosive event. International scientific authorities affirm that fusion does not generate a chain reaction and cannot be weaponised (IAEA, 2023a; OECD-NEA, 2024).

Therefore, civilian or humanitarian fusion systems:

- are not prohibited by the Treaty of Rarotonga
- do not impact Australia's or Pacific partners' treaty obligations
- do not require modification or exemption
- do not undermine regional nuclear-free norms
- can be deployed safely under IAEA-aligned safety frameworks

Australia can thus integrate fusion energy into its international development and humanitarian missions without affecting commitments under the Treaty of Rarotonga, NPT, or other regional non-proliferation arrangements.

4. Policy Recommendations

- 1. Integrate fusion energy into Australia's international development program as a conflict-prevention and resilience-building tool.
- 2. Establish a Fusion for Peace Initiative under DFAT and Defence to deploy micro-grids, communications modules, and desalination units across the Indo-Pacific.
- 3. Develop an ARPANSA-IAEA aligned regulatory and certification pathway for humanitarian fusion systems.
- 4. Promote regional cooperation through ASEAN, APEC, and IORA frameworks on sustainable energy and peacebuilding.
- 5. Support joint R&D with ANU, CSIRO, UKAEA, EUROfusion, and IAEA partners to design safe, export-ready fusion modules.
- 6. Embed fusion in climate-finance and resilience mechanisms for concessional deployment in fragile states.
- 7. Expand workforce training and education initiatives for Indo-Pacific partners in fusion safety, governance, and maintenance.

5. Conclusion

Fusion energy provides a unique opportunity to export abundance, not dependency; stability, not volatility; and cooperation, not competition. Its non-fissile, inherently safe nature supports peacebuilding goals while respecting Australia's domestic legislation and regional treaty obligations, including the Treaty of Rarotonga.

Embedding fusion within Australia's development and foreign policy portfolio aligns with national interests in security, diplomacy, humanitarian leadership, and non-proliferation (Crookston, 2025a, 2025b, 2025c). Fusion is an instrument of peace whose time has arrived.

6. References: - Fusion Preventing Conflict Draft Submission

Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). (2023). Glossary of terms.

Australian National University – Plasma Research Laboratory. (2023). Plasma confinement and diagnostics update. ANU Technical Report.

UK Atomic Energy Authority. (2022). MAST-U open data collection [Dataset]. UKAEA Open Data Portal.

U.S. Department of Energy, Fusion Energy Sciences (DOE FES). (2024). International cooperation for peaceful fusion development.

International Atomic Energy Agency (IAEA). (2023a). Fusion energy for peaceful purposes. Vienna.

International Atomic Energy Agency (IAEA). (2023b). Safety framework for fusion facilities. Vienna.

Submission to the Joint Standing Committee on Foreign Affairs, Defence and Trade

Submission to the Joint Standing Committee on Northern Australia: Preparing Northern

Australia for the Fusion Energy, Food, and Defence Industries of the Future.

Inquiry into the Department of Defence Annual Report 2023–24

Department of Climate Change, Energy, the Environment and Water (DCCEEW). (2023).

Modernising Australia's nuclear ban consultation paper. Canberra.

Department of Foreign Affairs and Trade (DFAT). (2024). Development partnerships for peace and stability in the Indo-Pacific.

Commonwealth Fusion Systems (CFS). (2025). Grid-connected fusion milestones.

Helion Energy. (2025). Commercial deployment timeline.

EUROfusion. (2024). Strategic research plan 2024-2028.

GO4FUSION Partnership. (2024). Public-private roadmap for fusion industrialisation. Brussels.

ITER Organization. (2024). ITER construction status and global partnerships. Cadarache.

Max Planck Institute for Plasma Physics (IPP). (2023). Wendelstein 7-X operational data. Germany.

OECD Nuclear Energy Agency (OECD-NEA). (2024). Fusion and non-proliferation analysis. Paris.

Joint European Torus (JET), Culham Centre for Fusion Energy (UKAEA). (2023). Deuterium-tritium campaign summary. UK.

Commonwealth Scientific and Industrial Research Organisation (CSIRO). (2024). Emerging energy systems for resilience. Canberra.

Australian Institute of Physics (AIP). (2024). Fusion research capability review.

Australian Nuclear Association (ANA). (2024). Public brief on fusion versus fission classification.

University of Sydney – Fusion and Plasma Physics Group. (2023). High-temperature plasma diagnostics.

University of Queensland – Plasma and Space Physics. (2023). Field confinement modelling

update.

University of New South Wales – Energy Systems and Plasma Physics. (2023). Fusion reactor control algorithms.

Monash University – Plasma Theory and Simulation. (2024). Compact fusion design research.

Canadian Nuclear Laboratories (CNL). (2023). Fusion fuels handling safety review.

Canadian Fusion Fuels Technology Project. (2023). Cryogenic systems for fusion machines.

National Ignition Facility (NIF). (2023). Ignition milestone summary. Livermore, CA.

Princeton Plasma Physics Laboratory (PPPL). (2023). Magnetic confinement advances. U.S. DOE.

EAST Tokamak, Institute of Plasma Physics, Chinese Academy of Sciences (CAS). (2024). Steady-state plasma operations. Hefei.

China Fusion Engineering Test Reactor (CFETR). (2024). Engineering progress update.

National Institute for Fusion Science (NIFS). (2023). Helical device experiments. Japan.

Helical Fusion Inc. (2024). Commercial fusion reactor design summary. Tokyo.

Korea Superconducting Tokamak Advanced Research (KSTAR). (2024). Superconducting magnet campaign results. Daejeon.

Australian Fusion Energy Association. (2024). Policy framework for a fusion industry.

Australian Academy of Technological Sciences and Engineering (ATSE). (2024). Future energy technologies report.

Australian Energy Market Operator (AEMO). (2025). MLF framework reform draft report.

Clean Energy Council. (2023). System integration and resilience review.

Climate Change Authority. (2024). Engineering and delivery metrics for net zero.

U.S. Nuclear Regulatory Commission (NRC). (2024). Fusion safety framework review. ADAMS Accession No. ML24234A100.

U.S. Department of State. (2024). International partnerships for fusion and peace.

European Fusion Association (EFA). (2024). Fusion education and skills pipeline.

International Renewable Energy Agency (IRENA). (2024). Energy transition outlook: Peace and security chapter.

United Nations Development Programme (UNDP). (2023). Energy for peace and human security. New York.

United Nations Educational, Scientific and Cultural Organization (UNESCO). (2023). Science for peace framework.

World Bank. (2024). Energy access and fragility index report. Washington DC.

Australian Defence Force (ADF). (2024). Humanitarian and disaster response operations doctrine.

Department of Industry, Science and Resources (DISR). (2024). Fusion industrial capability roadmap.

CSIRO Energy Systems. (2025). Micro-grid design for remote regions.

ANSTO. (2023). Isotope research and fusion applications summary.

European Commission DG Research and Innovation. (2024). Fusion for Energy progress report.

Brussels.

Australian Parliament House Library. (2025). Briefing note on fusion technology and international law.