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fin fishes. Even under the stringent emissions 
scenario (RCP2.6), warm-water corals and mid­
latitude bivalves will be at high risk by 2100. 
Under our current rate of emissions, most ma-

.. rine organisms evaluated will have very high risk 
of impads by 2100 and many by 2050. These 
results derived from eKperiments, field obser­
vations, and modeling are consistent with evi­
dence from higb-C02 periods in the paleorerord. 

Impacts to the ocean's ecosystem services 
follow a parallel trajectory. Services such as 
coastal prote<tion and capture fisheries are 
already affected by ocean warming and acid­
ification. The risks of impacts to these services 

·· increase with oontinued emissions: They are 
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people, will be at high risk. 

OUTLOOK: Four key messages emerge. First, 
the ocean strongly influences the climate sys­
tem and provides important services to humans. 
Second, impacts on key marine and coastal 
organisms, ecosystems, and services are al­
ready detectable, and several will face high 
risk of impacts well before 2100, even under 
the low-emissions scenario (RCP2.6). These im­
pacts will occur across all latitudes, making 

·· this a global concern beyond the north/south 
divide. Third, immediate and substantial re­

.. duction of 002 emissions is required to prevent 
the mas.5ive and mostly irreveisible impacts 

.. on ocean ecosystems and their services that 
are projected with emissions greater than those 
in RCP2.6. Limiting emissions to this level is 
necessary to meet stated objectives of the 
United Nations Framework Convention on 
Climate Change; a substantially different ocean 
would result from any less-stringent emissions 
scenario. Fourth, as atmospheric COi increases, 
protection, adaptation, and repair options for 
the ocean become fewer and less effective. 

Changes in ocean physics and chemistry and impacts on organisms and ecosystem ser- :: 
vices according to stringent (RCP2.6) and high business-as-usual (RCPS.5) C0 2 emis- :: 
sions scenarios. Changes in temperature (iiT) and pH (iipH) in 2090 to 2099 are relative to :: 
preindustrial (1870 to 1899). Sea level rise (SLR) in 2100 is relative to 1901. RCP2.6 is much more :: 
favorable to the ocean. although important ecosystems. goods, and services remain vulnerable, and :: 
allows more-efficient management options./, m . h: low, mid·, and high latitudes, respectively. ·· 

The ocean provides compelling arguments 
for rapid reductions in COi emissions and even­
tually atmospheric 002 drawdown. H ence, any 
new global climate agreement that does not 
minimize the impacts on the ocean will be 
inadequate.• 
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The ocean moderates anthropogenic climate change at the cost of profound alterations of 
its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of 
impacts on marine and coastal ecosystems- and the goods and services they provide- for 
growing cumulative carbon emissions under two contrasting emissions scenarios. The 
current emissions trajectory would rapidly and significantly alter many ecosystems and the 
associated services on which humans heavily depend. A reduced emissions scenario­
consistent with the Copenhagen Accord's goal of a global temperature increase of less 
than 2°C- is much more favorable to the ocean but still substantially alters important 
marine ecosystems and associated goods and services. The management options to 
address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new 
climate regime that fails to minimize ocean impacts wou ld be incomplete and inadequate. 

A 
tmospheric carbon dioxide (C~) has in 
creased from 278 to 400 parts per million 
(ppm) over the industrial period and, to 
gether with the increase of other green 
house gases, has driven a series of major 

environmental changes. The global ocean (includ 
ing enclosed seas) acts as a climate integrator 
that (i) absorbed 93% of Earth's additional heat 
since the 1970s, offsetting much atmospheric 
warming but increasing ocean temperature and 
sea level; (ii) captured 28% of anthropogenic~ 
emissions since 1750, leading to ocean acidifica 
tion; and (iii) accumulated nearly all water result 
ing from melting glaciers and ice sheets, hence 
furthering the rise in sea level. Thus, the ocean 
moderates anthropogenic climate change at the 
cost of major changes in its fundamental chem 
istzy and physics. These changes in ocean prop 
erties profoundly affect species' biogeography 
and phenology, as well as ecosystem dynamics 
and biogeochemical cycling (J 3~ Such changes 
inevitably affect the ecosystem services on which 
humans depend. The ocean represents more than 
90% of Earth's habitable space, hosts 25% of 
eukaryotic species (4), provides 11% of global 
animal protein consumed by humans (5), pro 
tects ooastlines, and more. Simply put, the ocean 
plays a particularly important role in the live 
lihood and food security of hundreds of millions 
of people. 

The United Nations Framework Convention 
on Oimate Oiange (UNFCCC) aims to stabilize 
atmospheric greenhouse gas concentrations "at a 
level that would prevent dangerous anthropogenic 
interference with the dimate system ... within a 
time frame sufficient to allow ecosystems to adapt 
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naturally to climate change, to ensure that food 
produttion is not threatened, and to enable eco 
nomic development to proceed in a sustainable 
manner" (6). According to the Copenhagen Ac 
oord (7), meeting these goals requires that the 
increase in average global surface temperature 
be Jess than 2°C over the preindustrial average. 
However, despite the ocean's critical role in global 
ecosystem goods and services, international cli 
mate negotiations have only minimally considered 
ocean impacts, especially those related to ocean 
acidification (S). Accordingly, highlighting ocean 
related issues is now crucial, given that even 
achieving the +2°C target (set on global tern 
perature) would not prevent many climate related 
impacts upon the ocean (9). 

This paper first summarizes the key findings 
of the Fifth Assessment Report (AR5) of the In 
tergovemmental Panel on Climate Change (IPCC) 
and, given the ongoing acceleration of climate 
change research, adds newer literature to assess 
the impacts of global change including ocean 
warming, acidification, deoxygenation, and sea 
level rise linking ocean physics and chemistzy 
to biological processes, ecosystem funttions, and 
human activities. Second, it builds on scenarios 
based on the range of cumulative fossil carbon 
emissions and the IPCC Representative Concen 
tration Pathways (RCP) RCP2.6 and RCP85, oon 
trasting two potential futures. RCP2.6 reflects the 
UNFCCC target of global temperature staying 
below +2°C, whereas RCP8.5 reflects the current 
trajectory of business as usual C02 emissions. 
Third, this paper provides a broad discussion of 
the options society has for addressing ocean im 
pacts and ends with key messages that provide 

further compelling arguments for ambitious C02 
emissions reduction pathways. 

Changes in ocean physics and chemistry 

Ocean changes resulting from anthropogenic 
emissions include long term increase in temper 
ature down t o at least 700 m, increased sea level, 
and a decrease in Arctic summer sea ice (Fig. 1 and 
Table 1) (JO). Other radiatively active agents such 
as ozone, methane, nitrous oxide, and aerosols 
do not affett the ocean as much as C02. Setting it 
apart, C02 accounts for two or more times the 
warming attnbuted to the non C~ greenhouse 
gases by 2100 (11) and causes ocean acidification. 
The uptake of excess anthropogenic ~ by the 
ocean increases the partial pressure of carbon 
dioxide (PCCh) and dissolved inorganic carbon 
while decreasing pH and the saturation state of 
seawater with respect t o the calcium carbonate 
minerals aragonite and calcite, both being crit 
ical drivers of solubility of shells and skeletons 
(1:1). Rising global~ also further exacerbates the 
nearshore biogeochemical changes asoociated with 
land use change, nutrient inputs, aquaculture, 
and fishing (13). 

Both the magnitude and rate of the anthropo 
genie carbon perturbation exceed the extent of 
natural variation over the last millennium and 
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Fig. 1. Environmental changes over the industrial period and the 21st century for a business-as-usual scenario and a stringent emissions scenario 
consistent with the UNFCCC target of increase in global surface temperature by 2°C. (A to E) Changes in globally averaged (A) SST, (B) sea level, (C) sea 
surface pH (total pH scale), (D) ocean volume (in o/o of total ocean \.Olume) with saturation state of calcium carbonate in aragonitic form (Oa) abo.,e 1 and above 3, 
and (E) dissolved oxygen. RCP8.5, red lines; RCP2.6, blue lines. Maps show the 21st century changes in SST (F and G) and in sea surface pH (H and I) for RCP8.5 
(top) and RCP2.6 (bottom), respectively. All projected values represent ensemble mean values from the Coupled Model lntercomparison A-oject 5 [CMIP5 (23)). 

Table 1. Changes in SST, pH, oxygen content, sea level, and ocean volume with respect to ara­
gonite for CMIP5 models and several RCP emissions scenarios. After Bopp et al. (23) except 
sea level rise (28). 

II.SST 

c0 c) 

II.pH II.~ content 
(units) (%) 

Sea level 
(m) 

Vol. 0.. 
>l (%) 

vo1.n. 
>3(%) 

......................................................................... Changes re..ia..~V.~.1.°. .. l.9..9..0..J9.9.9. ............................................................. ___ _ 
2090 2099 (RCP8.5) 2.73 0:3.3. }:~8. 9.:§7. 9.:~ --~-
2090 2099 (RCP4.5) 1.28 0.1.5. 2.·3.? 9.:~9. 1.5. Q.?7. 
2090 2099 (RCP2.6) 0.71 0 . .0.7. .................. 18..1 ..................... 9.:~.1 ................... 1.!:3. .............. -~-?.?. .. 
1990s (1990 1999) 0 0 g g 2.~ -~8.?. .. 

Preindustrial (1870 1899) 0.44 0 . .0.? ............................................................................ 2..5.:§ .............. ?.:?.~ .. . 
Preindustrial (1870 1879) 0.38 0 . .0.? ............................................................................ 2..5.:§ .............. ?~?.? .. . 
.................................... Changes.relative.to 1870_ 18.9.9.(e.!<_~pt~e.a.Je.v.e.i:r.e.1<1.f.iV.e.f.°.19..o.9 ___ _ 
2090 2099 (RCP8.5) 3.17 O .. <IC:l ................................................. 9.:8..?. ........................................ ___ _ 

2090 2099 (RCP4.5) 1.72 0-?..2. ................................................. 9.:?..8. ........................................ ___ _ 

2090 2099 (RCP2.6) 1.15 0 .. 1.~ .................................................. 9.:?..0. ........................................ ___ _ 

?.9.1.9.5. (2.9.1.9. ?.9.1.9.L .0.·8.3. _9·1.1. ___ _ 
Past 10 years (2005 2014) 0.72 0.1g g.19.~ ___ _ 

1990s (1990 1999) 0.44 o . .o.? .................................................................................................. ·---·-.. . 
Preindustrial (1870 1899) 0 0 0 

*Value for 2010 obtained from instrumental records. 
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over glacial interglacial time scales (14 16). Var 
iability of pH in coastal waters is considerably 
larger than that in the open ocean, partly driven 
by upwelling (17), freshwater input (18), eutroph 
ication (19) and biogeochemical processes (20). 
Anthropogeoic trends in biogeochernical variables 
notably in pH, l'COi, and the saturation of calcite 
and aragonite emerge from the noise of natural 
variability much faster than sea surface temper 
ature (SST) (21). The combined changes in these 
parameters will be distinguishable from natural 
fluctuations in 41% of the global ocean within a 
decade (22), and the change in aragonite saru 
ration over the industrial period has been more 
than five times greater than natural variability 
over t he past millennium in many regions (15) . 

The condition of the future ocean depends on 
the amount of carbon emitted in the coming dee 
ades (Figs. 1 and 2A). The current suite of earth 
system models illustrate the oontrast between 
future oceans under the high carbon emission, 
business as usual RCP8.5 versus t he stringent 
emission mitigation RCP2.6 (23, 24). The more 
stringent scenario allows less than one sixth of 
21st century emissions expected under business 
as usual. Between 2012 and 2100, compatible 
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Fig. 2. Observed impact and risk scenarios of ocean warming and acid­
ification for inportant organisms and critical ecosystem services. "Present­
day" (gray dotted line) corresponds to the period from 2005 to 2014. Impact 
levels are for the year 2100 under the different projections shown and do not 
consider genetic adaptation, acclimatization, or human risk reduction strategies 
(mitigation and societa l adaptation). RCP4 5 is shown for illustrative pur­
poses as an intermediate scenario between the business-as-usual high­
emissions scenario (RCP8.5) and the stringent reduction scenario (RCP2.6). 
(A) Changes in global average SST and pH versus cumulative fossil fuel emis­
sions. Realized fossil emissions (26) are indicated for different years below the 
horizontal axis, whereas the lines are based on allowable emissions estimated 

from ensemble means of the CMIP5 simulations for the industrial period and 
the 21st century following RCP2.6, RCP4.5, and RCP8.5 (23). Cumulative emis­
sion of 1000 GtC causes a global SST change of about 1.7"C and a surface pH 
change of about - 022 units. The colored shadings indicate the 68% confidence 
interval for pH (gray) and SST (pink) from observation-constrained, proba­
bilistic projections using 55 multi- gas emissions scenarios (24). ( B) Risk of 
impacts resulting from elevated C02 on key organisms that are well documented 
in the literature. (C) Risk of impacts resulting from elevated C02 on critical 
ecosystem services. The levels of confidence in the risk levels synthesize the 
author team's judgments (see materials and methods) about the validity of 
findings as determined through evaluation of evidence and agreement (157). 

cumulative carbon emissions from fossil fuel 115e 
are 1685 gigatons of carbon (GtC) and 'r/0 GtC 
for the two RCPs, respectively (JO, 25). This is in 
addition to the 375 and 180 GtC already emitted 
by 2011 by fos.5il fuel and land 115e, respectively 
(25). Because carbon emissions were 10 GtC in 
2013 (26), fast and massive emission reductions 
are required to keep global surface temperature 
below the 2°C target of the Copenhagen Acoord. 
Carbon emissions would need to be even lower if 
the ocean absorbs less excess C{h than is cur 
rently predicted. Indeed, the ocean's effective 
ness in absorbing C(h decreases with increasing 
emissions: the fraction of anthropogenic emis 
sions absorbed by the ocean in the 21st century is 
projected to decline from 56% for RCP2.6 to 22% 
for RCP85 (27). 

Ocean physics and chemistzy will be quite dif 
ferent under these two emissions scenarios, al 
though differences between the two trajectories 
will not be apparent until 2035. In 2100, the 
ocean will be much warmer and have a lower 
pH under RCP85 than under RCP2.6 (Fig. 1): The 
21st century global mean change in SST differs 
bynearlyafactorof4(mean ± 1SD: 2.7J ± 0.72°C 
versus 0.71 ± 0.45°C), whereas global surface 
pH changes range from 0.33 ± 0.003 units to 

0.07 ± 0.001 units). By 2100, the average global 
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increase in mean sea level relative to preindust 
rial is projected to be 0.86 m for RCP85 and 0.60 m 
for RCP2.6 (2S). By 2300, it will be less than 1 m 
for RCP2.6 and from 1 to over 3 m for RCP8.5 
(JO). Generally, an increase in stratification, linked 
to sea surface warming and freshening, is pro 
jected; this tends to slow ocean carbon uptake 
and nutrient supply to the surface (29). 
~ emissions also affect the deep ocean, al 

though the responses are delayed by the surface 
to deep transport time and continue for centuries 
even after carbon emissions cease (30). The vol 
ume of ocean water that is supersaturated by 
more than a factor of 3 with respett to aragonite 
cna > 3) is projected to oompletely vanish over 
the oourse of the century for RCP8.5 and to de 
crease from 2% to 1.25% of the ocean volume for 
RCP2.6 (Fig. 1 and Table 1). Conversely, the vol 
ume ocrupied by undersaturated water cna < 1) 
that is corrosive to unprotected calcium carbon 
ate shells and skeletons expands from 76% of the 
whole ocean volume in the 1990s to 91% in 2100 
with RCP8.5 and to only 83% with RCP2.6. The 
whole ocean oxygen inventory is consistently pro 
jected to decrease (RCP8.5: 3.45 ± 0.44%; 
RCP2.6: 1.81 ± 0.31%) with largest changes in 
the subsurface mid latitude regions. However, it 
remains unclear whether, and to what extent, 

low oxygen regions will expand and whether the 
observed expansion of oxygen minimum zones 
over recent decades resulted from direct anthro 
pogenic perturbation or was caused by natural 
variability (31, 32). 

Projections of ocean warming and acidifica 
tion in coastal systems follow the general trends 
of global and regional IPCC models but have lower 
confidence values becall5e oflarger contnbutions 
of processes otherthan C(h uptake (3). Projected 
regional changes vary, with the largest sea surface 
warming in the North Pacific, the tropical East 
Pacific, and in parts of the Arctic and the largest 
surface pH decrease in the Arctic (Figs. 1 and 3). 
By 2100, 69% of the surface ocean will warm by 
more than 15°C and acidify by more than 0.2 pH 
units relative to preindustrial under RCP8.5 as 
opposed to less than 1% under RCP2.6 (Fig. 3). 
The largest absolute decrease in aragonite saru 
ration is projected for the tropical ocean, partly 
modulated by variability within coral reef sites 
(33, 34). Seasonally undersaturated conditions are 
already present in the northeastern Pacific and 
the California upwelling system (17) and in the 
Arctic Ocean (35) and expected for the Southern 
Ocean (36). pH reductions at the sea floor below 
500 m depth, which includes biodiversity hot 
spots such as deep sea canyons and seamounts, are 
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Fig. 3. Regional changes in the physical system and associated risks for natural and human­
managed systems. Projected changes in SST (t.SST) and pH (t.pH) in 2090- 2099 relative to pre­
industrial under the RCP2.6 and RCP8 5 scenarios are displayed in different colors on the map. The major 
ocean regions are indicated as well as examples of risks for natural systems and fisheries [modified from 
(l )]. Text in parentheses specifies the level of confidence (157). 
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projected to exceed 0.2 UDits (the likely bound of 
natural variability over the past hundreds of thou 
sands of years) by 2100 in close to 23% of North 
Atlantic deep sea canyons and 8% of seamounts 
under RCP85 including sites proposed as ma 
rine protected areas (37). 

In sununa.ry, the carbon that we emit today 
will change the earth system irreversibly fur many 
generations to come (JO). The ocean's content of 
carbon, acidity, and heat as well as sea level will 
rontinue to increase long after atmospheric C~ is 
stabilized. These irrevemble changes increase with 
increasing emissions (Fig. 2), underscoring the 
urgency of near term carbon emission reduction 
if ocean warming and acidification are to be kept 
at moderate levels. 

Effects on biological processes 
and ecosystems 

(xgaaisms and ea)h)'StanS are changing in response 
to ocean warming, acidification, and deoxygena 
tion. The inherent difficulty of distinguishing cli 
mate signals from natural variability (3S), and of 
acoounting fur genetic adaptation (39), makes docu 
menting these shifts challenging, but neverthee;s 
broad anthropogenic impacts are evident (Figs. 
2B and3). 

Warming 

Species' range shifts, usually following a shift in 
isotherms er temperature extremes, are a key con 
sequence of ocean warming (40). Recent studies 
strongly reiterate that many species including 
various invertebrates, commercially important 
fish species, and marine mammals are under 
going phenological and geographical shifts as a 
result of warming (41, 42). Organisms move at 
different rates, up to 400 km per decade, as they 
track temperature changes and local di mate veloc 
ities acoording to their erological niches (4.3, 44). 
These shifts will rontinue with projected ocean 
warming (42, 45), causing potentially permanent 
changes to ecosystems, including local extinc 
tions (42), while simultaneously producing novel 
assemblages (46). Responses to changing temper 
ature depend on species' specific windows of 
thermal tolerance and are positively related to 
the degree of warming. Exceeding these limits 
can affect growth, body size, behavior, immune 
defense, feeding, and reproductive success (2 ), 
although species' individual tolerances vary. Glob 
ally, poleward range shifts of more than 800 spe 
cies of exploited marine fish and invertebrates 
projected under RCP85 are 65% faster than those 
under RCP2.6 by mid 21st century relative to 
the years 2000s (42). There is medium confi 
dence that animals adapted to a wide range of 
temperatures will cope better with future con 
ditions, whereas tropical and polar specialists 
are at greatest risk (2). Changes are not syn 
chronous across trophic levels; alterations in 
body sizes within food webs (47) and in food web 
composition (48) have been reported. Recent 
experimental studies suggest that some species 
may adapt to warming projected under RCP85 
[e.g., (49, 50)], but biogeographical shifts re 
strict adaptive potential and the small number 

sciencemag.org SCIENCE 



of species and population scale studies limit the
ability to generalize the importance of genetic
adaptation in moderating impacts.
Reef building corals are extremely vulnerable

to warming (1, 2, 51). Warming causes mass mor
tality of warm water corals through bleaching
as well as through biotic diseases, resulting in
declines in coral abundance and biodiversity.
Coral reefs can recover from bleaching events
when thermal stress is minimal and of short
duration (52). However, ocean warming and acid
ification are expected to act synergistically to push
corals and coral reefs into conditions that are
unfavorable for coral reef ecosystems (53). There
is limited agreement and low confidence on the
potential for corals to adapt to rapid warming.
Most coral species have clearly adapted to warm
environments (54, 55) although the time scale of
adaptation is likely to be long given the relatively
lengthy generation times of corals [3 to 100 years
(56)]. Recent studies have shown short term ac
climation and adaptation in some fast growing
species (57) and suggested that some genetic
mechanisms may allow faster rates of change
(58). It is, however, doubtful that corals will be
able to adapt quickly enough to maintain popu
lations undermost emissions scenarios (56, 59, 60),
especially where temperature keeps increasing
over time (RCP4.5 and higher). Temperature is
also an important determinant of deep sea coral
distribution, although less is known about how
deep coral communities respond to thermal stress
(61). The consensus is that adaptive responses of
organisms will have little chance to keep current
ecosystems unchanged if ocean temperature and
chemistry are not stabilized, giving marine eco
systems the time needed to adapt to the new,
stable environmental conditions.

Ocean acidification

Organisms producing calcium carbonate shells
and skeletons experience the strongest negative
impacts from ocean acidification (62). Responses
to future levels of ocean acidification expected by
2100 under RCP8.5 include reduced calcification,
reduced rates of repair, and weakened calcified
structures, but responses are species specific [e.g.,
(63)]. Reproductive success, early life stage sur
vival, feeding rate, and stress response mecha
nismsmay also be affected (2). Most studies have
investigated the effects of ocean acidification on
isolated organisms; far less is known about the
effects on communities and ecosystems.
Few studies measure present day acidification

effects in natural settings. However, recent field
observations show a decrease in coccolith thick
ness over the past 12 years in the Mediterranean
(64) and dissolution of live pteropod shells in the
California Current system and Southern Ocean,
both areas that experience significant anthropo
genic acidification (65, 66). Recent investigations
have also begun to report community level re
sponses, for example, in phytoplanktonic (67, 68),
bacterial (69), seagrass (70), and algal (71) com
munities. Decreases in net calcification, at least
partly because of ocean acidification, have also
been observed in a coral reef over 1975 to 2008

(72), and conditions are already shifting some
coral reefs to net erosion (73).
Most studies have investigated phenotypically

plastic responses in relatively short term, single
generation experiments and therefore did not
consider the potential for transgenerational re
sponse and genetic adaptation (74). Studies
published since the AR5 have expanded on the
longer term responses to ocean acidification and
have found that transgenerational and evolution
ary responses can partly mitigate adverse effects,
for example, in phytoplankton (75), planktonic
crustaceans (76), sea urchins (77), and fish (78).

Deoxygenation

Expanding oxygen minimum zones benefits mi
crobes and life forms adapted to hypoxia while
restricting the ranges of most other species (2),
with eutrophication from coastal pollution exac
erbating the problem, resulting in organicmatter
increasingmetabolic rates in deeper coastal areas
(79). Moreover, higher temperatures increase spe
cies’ sensitivity to hypoxia (80), limiting the depth
distribution of fish and invertebrates not adapted
to hypoxic conditions (81) and leading to commu
nity level shifts to smaller Eukarya, Bacteria, and
Archaea under conditions of diminished O2 (82).
Conversely, hypoxia adapted species are likely to
benefit, as illustrated by the range expansionof a
squid adapted to hypoxia (83).

Multiple drivers

Investigations of single drivers can produce mis
leading inferences about organismal responses
in a multivariate natural environment because
interactive (additive, synergistic, or antagonistic)
effects often are not predictable from single
driver studies. This is a major source of uncer
tainty for projections (39), but several recent
studies have better characterized interactions
among some drivers. Changes in temperature
and pH, such as those projected under RCP8.5
for the year 2100, can have synergistic negative
effects on species growth, survival, fitness, calcifi
cation, and development (84 88). In some cases,
hypoxic conditions can mediate negative effects
of ocean acidification (89, 90); however, ocean
acidification and hypoxia increase heat sensitiv
ity and vice versa (2), and oxygen loss combined
with warming is projected to contract metabol
ically viable habitats of marine animals on a glob
al scale (91). Growing evidence also suggests that
interactionswithother environmental factors such
as irradiance, nutrient availability, geographic lo
cation, and species community composition can
strongly modulate the biological effects of warm
ing, ocean acidification, and hypoxia (68, 92 95).
Few studies addressed the potential for genetic
adaptation to multiple drivers, but the phyto
plankton Emiliania huxleyi can adapt to simul
taneous warming and acidification (49). Other
direct human impacts (such as fishing) can re
duce the adaptive capacity of marine species and
ecosystems to CO2 related impacts. For example,
fishing reduces species diversity, simplifies the
trophic food web, and increases ecosystem sensi
tivity to climate change (96). Because relatively little

is known on the interacting effects of environ
mental factors and the complexity of the marine
foodweb, it is premature tomake ecosystem wide
projections. However, impacts on keystone spe
cies and ecosystem engineers of three dimensional
habitats are likely to shift whole communities (97).

Present-day impact and future risks

The observed impacts and future additional risks
resulting from ocean warming and acidification
vary by organism and ecosystem (Fig. 2B). Warm
water corals are already affected, as are mid
latitude seagrass, high latitude pteropods and
krill, mid latitude bivalves, and finfish. If CO2

levels are kept to the RCP2.6 scenario, by 2100
the risk of impact increases to “high” for warm
water corals and mid latitude bivalves. Projec
tionswithRCP8.5 indicate very high risk of impact
on most marine organisms considered, except
mangrove. Avoiding very high levels of risk re
quires limiting the increase in global surface tem
perature between 1990 and 2100 to below 2°C
and the increase in SST below ~1.2°C. These risks
of impact, based on perturbation experiments,
field observations, and modeling, are consistent
with the paleorecord, which indicates mass ex
tinctions triggered by carbon perturbation events
such as at the Permo Triassic boundary [at a rate
slower than the present one (98)] or severe losses
of deep sea fauna during the last glaciation, at
tributed to oxygen depletion (99). Evolution in
response to environmental changes that occurred
much slower than those projected in the coming
decades did not, therefore, prevent major large
scale alterations of marine ecosystems. Levels of
confidence are generally medium to very high for
RCP2.6 but significantly lower for RCP8.5, except
for seagrass, warm water corals, and pteropods,
for which they remain high or very high (see
supplementary materials).

Effects on ecosystem services and
ocean-related human activities

Ocean warming, acidification, and deoxygenation
alter earth system regulating processes (e.g., cli
mate, heat distribution, weather, water flow, and
waste treatment), habitat provision, and cultural
services [e.g., recreation and leisure, inspiration,
and cultural heritage (100)]. As a consequence,
CO2 driven global change is expected to result in
economic impacts for humans through the alter
ation of ocean derived resources and increasing
risks to public health, human development, well
being, and security (101).

Ocean carbon uptake

Ocean uptake of anthropogenic CO2 is a key ser
vice to society that moderates climate change,
although it comes at the cost of ocean acidifica
tion. CO2 uptake depends on multiple processes,
many of which are sensitive to climate change
[see above (102)], and the open ocean is projected
to absorb a decreasing fraction of anthropogenic
CO2 emissions as those emissions increase. The
fraction of 21st century emissions remaining in
the atmosphere consequently increases from
30% for RCP2.6 to 69% for RCP8.5 (27). The
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contribution of vegetated coastal ecosystems
including seagrasses, mangrove forests, and salt
marshes to contemporary carbon sequestration
(103) is an order of magnitude less than that of
the land biosphere and open ocean, and the
coastal carbon sequestered is likely part of the
natural carbon cycle rather than related to
anthropogenic emissions. The projected loss of
these habitats would not only reduce this rela
tively small uptake of CO2, but would also release
carbon previously stored and thus exacerbate
CO2 driven changes.

Coastal protection

Coastal habitats including coral reefs, oyster beds,
mangrove forests, salt marshes, kelp forests, and
seagrass beds protect human infrastructure, no
tably by reducing coastal wave energy, with addi
tional benefits, such as limitation of coastal erosion
and marine inundation (104, 105). Nevertheless,
the projected increases in coastal human settle
ments and sea level will combine to expose 0.2
to 4.6% of the global population to inundation
annually at a cost to global gross domestic pro
duct of 0.3 to 9.3% (106). The value of coastal
protection in terms of prevented damage can be
very large. Coastal wetlands in the United States
were estimated to provideU.S. $23.2 billion year−1

in storm protection services (107). In contrast to
human infrastructure, natural habitats can grow
to keep up with sea level rise, depending on the
rate and local conditions, while offering other eco
system services such as fish and timber (104, 108).
These habitats are, however, themselves affected
by ocean warming and acidification, in combi
nation with other human disturbances such as
urbanization, deforestation, and dredging,making
global projections difficult.

Capture fisheries

Oceanwarming significantly affects provisioning
services through its effects on marine capture
fisheries (109). Warm water species have increas
ingly dominated global fishery catches in recent
decades, which can be attributed to a warming
ocean (110 114). In addition, the maximum size
of exploited fishes decreases with rising SST and
decreasing oxygen level, ultimately reducing po
tential fish yield (115) in agreement with model
predictions (111).
Human communities, especially in developing

nations, that depend heavily on coastal fisheries
resources for food, economic security, and tradi
tional culture are at particular risk from shifts in
ocean primary productivity and species ranges
(116 120). For example, tropical fisheries yield is
expected to decrease (42, 117, 121) in ways that
vary among subregions and species (120). The loss
of critical habitats, such as coral reefs and man
groves, will exacerbate the impacts on tropical
fisheries and hence on vulnerable human com
munities. Substantial declines for tropical fish
eries are projected, with robust evidence and
strong agreement, even under RCP2.6 by mid
21st century.
Arctic fisheries may benefit from increased pri

mary production, with projected revenue increas

ing by 14 to 59% by mid 21st century relative to
the present day under a high emissions scenario
(118). Nevertheless, the Arctic faces increasing
overall risk because it is a hot spot of ocean
acidification and social vulnerability [includ
ing high economic and nutritional dependence
on marine resources and limited employment
and nutritional alternatives (118, 122)]. Risk of
impact on mid latitude fisheries is more varia
ble depending on the locations and exploited
species, but it is expected to increase substan
tially under RCP8.5 because of the combination
of ocean warming, acidification, and deoxyge
nation (2, 123, 124). Eventually, changes in the
accessibility of marine resources will likely lead
to increasing geopolitical and governance chal
lenges for managing trans boundary stocks and
mitigating overexploitation (125, 126), leading
to additional economic and societal costs that
will be felt unequally and will place heavier bur
dens on less advantaged human communities.

Aquaculture

Climate and acidification related impacts to aqua
culture are expected to be generally negative, with
impacts varying by location, species, and aquacul
ture method. Farmed species at higher trophic
levels are expected to exhibit higher mortality
rates and lower productivity under warming,with
open and semi open aquaculture and those in the
tropics particularly at risk (127, 128). A reduction
ofmussel production by 50 or 70% is projected in
theUnited Kingdomunder the RCP2.6 or RCP8.5
scenarios, respectively (127). Projected declines in
oyster production resulting from warming are
much lower, but ocean acidification increases the
risk in upwelling areas, such as the Northeast
Pacific (129). The global economic cost of losses
in the capture and aquaculture of molluscs re
sulting from ocean acidification based on the
high emissions scenario RCP8.5 could be higher
than U.S. $100 billion by the year 2100 (130). Sea
level rise will bring saline water into deltas and
estuaries, where aquaculture commonly occurs
(131), driving aquaculture upstream and destroy
ingwetlands. Infectious diseases also pose a greater
threat to aquaculture in a warmer ocean, with
impacts observed, for example, in oysters and
abalone aquaculture (132) and coastal fish farm
ing (133). Risks are also generated by the in
creased mobility of invasive species (46).

Tourism

Decreases in the quality and abundance of coral
reef cover are expected to negatively affect tourism
(1, 3). Loss of coral reefs to tourism under the
RCP2.6 and RCP8.5 scenarios could cost between
U.S. $1.9 billion and U.S. $12 billion per year,
respectively (134). Coral reef losses due to ocean
warming and acidification on the Great Barrier
Reef place up to A$5.7 billion and 69,000 jobs in
Australia at risk (135). In addition, ocean acidif
ication may cause an annual loss of reef ecosys
tem services that are valued up to U.S. $1 trillion
by 2100 (136). For about a quarter of countries
with reef related tourism, mainly less developed
countries, this kind of tourism accounts for more

than 15% of gross domestic product (137) and is
more sustainable than extractive livelihoods.

Human health

Ocean warming and acidification affect public
health and security, although the impact path
ways and associated costs are poorly understood.
Hosts and parasites are likely to undergo pole
ward range shifts under climate change, and dis
ease outbreaks of cholera (138) and other Vibrio
infections (139) have already been linked towarmer
conditions. The increased risk of pathogens and
parasites in marine species and increased oppor
tunities for pathogen transfer between hosts (140)
can reduce food security (141). Increasing inten
sity and frequency of storm surges and sea level
rise may expand the geographical and seasonal
ranges of bacteria, increasing human exposure to
diseases (132). Inundation can also flood agricul
tural land in coastal regions, jeopardizing food
security and harming human health (142).

Present-day impact and future risks

The impacts of ocean acidification and warming
have already been detected in some key eco
system services, such as coastal protection and
capture fisheries (Figs. 2C and 3). The risks of
impacts increase as a function of increased tem
perature and decreased pHbut are still moderate
by 2100 for most services with the RCP2.6 sce
nario. However, under RCP8.5, we find that the
risks of impact will become high or very high by
2100 for all seven ecosystem services considered.
Fin fisheries at low latitudewill be affected sooner
than other services; they will face very high risk
at a CO2 level corresponding to RCP2.6 in 2100.
In addition, cumulative or synergistic impacts
with other human induced drivers, such as over
exploitation of living resources, habitat destruc
tion, and pollution, will likely exacerbate the risk
of CO2 related impacts.

Management options

Limiting the effects of ocean warming and acid
ification is critical considering the widespread
risks of impacts facing natural and human sys
tems, even under a stringent emissions scenario
(RCP2.6; Fig. 2). A growing body of literature
presents options for action in response to climate
change and ocean acidification (143 145). Draw
ing on Billé et al. (146), these actions can be clus
tered in four groups (Fig. 4): reducing the drivers
of climate change and ocean acidification (mit
igate), building or maintaining resilience in eco
systems (protect), adapting human societies (adapt),
and repairing damage that has already occurred
(repair). At present, only one of these (reducing
CO2 emissions) addresses the fundamental prob
lem; the others merely delay or decrease impacts
(e.g., protecting reefs from major disturbances
such as coral mining). Some actions rely on readi
ly available technologies (e.g., sewage treatment
plants to reduce exacerbating effects of coastal
nutrient pollution) and socioeconomic mecha
nisms (e.g., coastal setback zones), whereas more
engineering intensive techniques are being devel
oped and will require testing (e.g., removal of
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they provide. Therefore, actions that do not re 
duce carbon emissions are meaningful ocean 
management options only if the future climate 
regime entails ambitious national contributions 
toward the phaseout of global C~ emi5.5ions as 
well as a strong funding mechanism and a rele 
vant framework to support on the ground imple =·········~·············: ·· mentation of these options. 

Reduce other 
environmental 

stressors O·········i 

Develop e· 
MPAs O········ Protect .,. _ _ 
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Key messages 

Maintaining ocean ecosystems and services de 
pends in large part on the negotiation process 
toward a global climate agreement under the 
UNFCCC. In this regard, four key messages emerge 

·· from our analysis. First, the ocean strongly in 
fluences the climate system and provides impor 
tant services to humans. Seoond, impacts on key 

Build inf rast ructures O··········~·········O Migrate 
to protect assets ~ 

0 I I I 

·· marine and coastal organisms, ecosystems, and 
services from anthropogenic C~ emi5.5ions are 
already detectable, and several will face high risk 
of impacts well before 2100, even with the strin 

.. gent C{h emi5.5ions scenario (RCP2.6). These im 
pacts are occurring across all latitudes and have 
become a global concern that spans the tradi 
tional north/south divide. Thirtl, the analysis mows 
that immediate and substantial reduction of 002 

emis.5ions is required in order to prevent the mas 

Change 0·············: : : :. ............ 0 Relocate 
practices i i activities 

Use ecosystems O···········_i L .......... o Relocate 
to protect assets species 

Fig. 4 . Four clusters of actions against climate change, including ocean acicification. For each :. 
cluster, a nonexhaustive list of actions is shown. [C02]atm is concentration of atmospheric CQi; GH, :: 
greenhouse; GHG, greenhouse gases; MPAs, marine protected areas. The mitigation pathway leading to :: 
CQi reductions is represented in bold , consistent with the consensus view that significant reductions in :: 
C02 emissions is presently the only actual " solution" to the ocean impacts of climate change and ocean :: 
acidification (see main text). 

C~ from the annosphere). These options inter 
act. For example, reducing secondary environmen 
ta! stressors so as to retain eoosystem resilience 
works over some range of Pe<>i values but is uJ 
timately relevant only if ocean warming and 
acidification are drastically limited One cannot 
manage coral reef resilience, for example, if there 
are no healthy reefs remaining (46). Importantly, 
some policy options are antagonistic: For exam 
pie, solar radiation management could limit the 
increa<Je of surface temperature but would reduce 
the incentive to cut greenhouse gases emis.5ions, 
including C~ thereby providing no relief from 
ocean acidification (147). 

A positive development is that a widening 
range of stakeholders are testing new practices 
or reviving old ones, including C{h extraction 
from seawater (14S), assisted evolution of corals 
(140), ooral farming (150), and customary local 
management (15[). Such field tests provide use 
able information and tools for decision makers 
and climate negotiators as to the costs, benefits, 
and timing of management options. Aquarulture, 
for example, has shown sane potential to reduce 
the ri5k of impacts from climate change and ocean 
acidification through societal adaptation, such as 
improved monitoring and changing cuhured 
species or farm locations (127, 152). However, 
the cost of adaptation measures such as real 
time monitoring of water chemistzy can be 
prohibitive and not within the reach of most 
aquaculture operations, especially those in the 
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developing world. Erosystem based adaptation 
or using ecosystems to reduce the vulnerability :: 
of people appears to offer cost efficient solu :: 
tions bringing muhiple co benefits, especially for :: 
developing countries and marginalized commu :: 
nities (153). Stimulating ecosystem resilience by :: 
reducing the number and magnitude of local :: 
stressors and setting up marine protected areas :: 
(154) with strictly enforced no take areas and :: 
limited pollutant inputs also stand out as tract :: 
able priorities. Moreover, some regions and local :: 
areas that are relatively less exposed to warming, :: 
hypoxia, and acidification could be climate change :: 
refugia, where more favorable environmental con :: 
ditions would enable survival under C(h driven :: 
impacts (155). Thus, identifying these climate :. 
change refugia and conserving biodiversity there :: 
oontnbute to building resilience to climate change :: 
(156). Nevertheless, all of these options require ap :: 
propriate policy frameworks and financial oom :: 
mitments to cover transaction and opportunity :: 
costs, surveillance, and enforcement and moni :: 
toring and likely offer only limited protection :: 
in the face of persistent climate change and :: 
ocean acidification. 

As the ocean warms and acidifies, the range oC 
protection, adaptation, and repair options and :: 
our oonfidence in those options dwindles, while :: 
the cost of remaining options skyrockets. Lower :: 
emissions scenarios such as RCP2.6 leave society :: 
with a greater number of effective options for :: 
safeguarding marine eoosystems and the services .· 

sive and effettively irrevemble impacts on ocean 
ecosystems and their services that are projetted 
with emis.5ions scenarios more severe 1han RCP2.6. 
Limiting emissions to below this level is neces 
sary to meet UNFCCC's stated objectives. Man 
agement options that overlook ~ such as solar 
radiation management and control of methane 
emission, will only minimize impacts of ocean 
warming and not those of ocean acidification. 
Fourth, as C{h increases, the protection, adapta 
tion, and repair options fur the ocean beoome 
fewer and Jess effective. 

Given the oontrasting futures we have outlined 
here, the ocean provides further compelling ar 
guments for rapid and rigorous C~ emission 
reduction and eventual reduction of atmospheric 
002 content. As a result, any new global climate 
agreement that does not minimize the impacts 
on the ocean will be incomplete and inadequate. 
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