

In assessing the political impact of Optional Preferential Voting, the votes to be looked at are the 1,706 votes for Ree that did not express any further preference. If these electors had voted under a system of compulsory preferential voting, what assumptions can we make about how they would have directed preferences?

Scenarios 1 and 6 are clearly unrealistic, but they set the upper and lower bounds for what could have been the results under full preferences. I would argue that Scenario 2 is the best estimate to use in assessing the political impact. In allocating the exhausted preferences between Labor and National, you have to accept some value between 0 and 100 as the percentage of preferences flowing to Labor. The option chosen by Scenario 2, to use the percentage of voters that did direct preferences, is at least available data. Any other assumption is based on data that does not exist.

There are two effects in operation that need to be separated in assessing political impact of optional preferential voting. The first is the exhaustion effect. Every exhausted vote puts the leading candidate closer to 50% at a faster rate than the second placed candidate. In the above example, the 9.86% of exhausted votes is effectively allocated to the Labor and National percentages as the percentages are re-weighted to 100%. In the above example, Labor effectively receives 5.14% of the exhausted vote total and the National Party 4.72%, which is in the same ratios as the 2CP's as a percentage of the formal vote. This re-weighting is a simple function of mathematics and in every case will assist the candidate that starts out with the highest vote.

The second effect is the missed preferences effect In the Charters Towers example, Labor has been advantaged, and the National Party disadvantaged, because under Scenario 2, the majority of exhausted votes would have flowed to the Nationals.

If the preferences of the distributed votes had split 50:50, then the missed preferences effect would be zero. Even if all exhausted preferences had been distributed in the same ratio, it would have no impact on the result, as no matter how many preferences are distributed, a $50: 50$ split cannot change the order of the two leading candidates.

But note, a $50: 50$ split of preferences does not cancel the exhaustion effect. The leading candidate will still receive an advantage from exhausted votes, even with a $50: 50$ split.

In the above examples, the missed preferences effect equals the difference between Scenarios 2 and 3 , the missed preferences measured against a $50: 50$ split. So here, the missed preference effect for Labor is $51.96-49.75=+2.21$.

The exhaustion effect is the difference between Scenarios 3 and 4 . So the exhaustion effect for Labor is $52.17-51.96=+0.21$

It is important to note that the exhaustion effect will always be positive for the leading candidate, but the missed preference effect will be negative or positive depending on whether a party has missed out on preferences thanks to exhausted preferences, or seen there opponent disadvantaged by missing out on a flow of preferences.

Scenario 5 is the reverse of Scenario 2 and assumes Labor receives the majority of preferences. Under Scenario 5, this is $51.96-54.17=-2.21$.

So Scenario 5 produces the reverse missing preference effect to Scenario 2, but the exhaustion effect does not change.

My overall measure of optional preferential voting advantage is:

$$
\begin{aligned}
\text { OPV Advantage } & =[\text { Exhaustion Effect }]+[\text { Missing Preferences effect }] \\
& =0.21+2.21 \\
& =+2.42
\end{aligned}
$$

If Scenario 5 had applied, then the advantage would have been $0.21+(-2.21)=-2.00$
(i.e. a disadvantage)

Normally the OPV advantage would be calculated directly by subtracting the percentage calculated where the ratio of actual preferences is applied to the exhausted votes (Scenario 2) from the percentage calculated under optional preferential voting (Scenario 4).

However, as the above discussion explains, this advantage has two components, the exhaustion effect which is always positive for the leading candidate, and the missing preferences effect which can be either positive or negative.

W.A. Legislative Assembly Ticket Vote - 1988

Illustration 9.4 Ticket voting-Western Australian Legislative Assembly, 1986

Election District QLD Examples		Primary Votes				2-candidate Percent			\% Preferences			OPV Effects				
		1st	\% 2nd	\% Other \%		1st	2nd	Exh	1st	2nd	Exh	Exhaust	Missing	Total	Predict	
1995	Redcliffe		ALP	44.61 LIB	40.10	15.29	50.38	49.62	4.31	32.76	67.24	28.17	+0.02	+0.74	+0.76	49.62
1998	Barron River	ALP	35.16 LIB	29.88	34.96	50.63	49.37	9.39	41.90	58.10	26.86	+0.06	+0.76	+0.82	49.81	
1998	Mansfield	ALP	40.86 LIB	38.95	20.19	50.17	49.83	4.41	44.98	55.02	21.86	+0.01	+0.22	+0.23	49.94	
1998	Springwood	ALP	38.25 LIB	34.03	27.72	50.57	49.43	8.58	41.70	58.30	30.93	+0.05	+0.71	+0.76	49.81	
1998	Tablelands	ONP	42.03 NAT	32.89	25.08	50.28	49.72	8.66	23.68	76.32	34.53	+0.02	+2.28	+2.30	47.97	
2001	Burdekin	ALP	36.72 NAT	22.74	40.54	55.13	44.87	24.39	30.72	69.28	60.16	+1.25	+4.70	+5.95	49.17	
2001	Charters Towers	ALP	43.78 NAT	34.58	21.64	52.17	47.83	9.86	27.61	72.39	45.55	+0.21	+2.21	+2.42	49.75	
2001	Warrego	NAT	33.84 IND	26.09	40.07	50.30	49.70	20.68	31.24	68.76	51.60	+0.06	+3.88	+3.94	46.36	
NSW Elections																
1988	Camden	ALP	40.68 LIB	34.01	$25.31{ }^{\text {T }}$	50.05	49.95	7.23	31.82	68.18	28.58	+0.00	+1.32	+1.32	48.74	
1988	Charlestown	ALP	43.66 LIB	34.80	21.54	50.11	49.89	2.44	27.37	72.63	11.34	+0.00	+0.55	+0.56	49.55	
1988	Keira	ALP	38.87 LIB	34.72	26.41	50.79	49.21	10.16	41.59	58.41	38.48	+0.08	+0.85	+0.93	49.85	
1988	Maitland	ALP	40.51 LIB	31.70	27.79	50.76	49.24	6.72	32.44	67.56	24.19	+0.05	+1.18	+1.23	49.52	
1988	Port Stephens	ALP	42.23 LIB	40.36	17.41	50.16	49.84	7.57	41.96	58.04	43.47	+0.01	+0.61	+0.62	49.54	
1991	The Entrance	LIB	46.14 ALP	43.12	10.74	50.19	49.81	2.89	33.12	66.88	26.88	+0.01	+0.49	+0.49	49.70	
1995	Murwillumbah	NAT	41.15 ALP	28.01	30.84	52.05	47.95	10.13	27.19	72.81	32.83	+0.21	+2.31	+2.52	49.54	
1999	Albury	LIB	43.00 IND	34.85	22.15	50.98	49.02	7.72	28.02	71.98	34.87	+0.08	+1.70	+1.77	49.20	
1999	Clarence	ALP	36.86 NAT	25.43	37.71	50.22	49.78	16.78	23.56	76.44	44.49	+0.04	+4.44	+4.47	45.74	
2003	Gosford	LIB	46.25 ALP	43.14	10.61	50.33	49.67	5.68	24.64	75.36	53.53	+0.02	+1.44	+1.46	48.87	
2003	Willoughby	LIB	36.27 IND	24.85	38.88	50.22	49.78	19.73	21.08	78.92	50.76	+0.04	+5.71	+5.75	44.47	

1995 Queensland Counter Example

1995	Mulgrave	NAT	45.98 ALP	45.19	8.83	50.47	49.53	1.80	50.92	49.08	20.34	+0.01	-0.02	-0.01	50.48
1995	Mundingburra	ALP	43.82 LIB	44.40	11.78	50.04	49.96	3.30	53.93	46.07	28.04	+0.00	-0.13	-0.13	50.17

NSW Safe Seat Examples

2003	Marrickville Liverpool	ALP	48.40 GRN 69.60 LIB	28.47 15.19	23.12 15.21	60.70 80.72	39.30 19.28	15.39 10.10	38.18 57.99	61.82 42.01	66.56 66.42	+1.65 +3.10	+1.82 -0.81	+3.46 +2.30	$\begin{aligned} & \hline 57.23 \\ & 78.42 \end{aligned}$

