Supplementary submission to Regional Aust Committee (Supplement to submission number 617)

This updates my original submission (especially the included "Summary Table"), to incorporate the following,

- the MDBA submission (with much additional detail on actual diversions) and evidence to the committee, the MDBA chairs 7 April speech, and, other transcripts and submissions added to the committees website since my original submission,
- show likely total inflows in financial year 2010/11 against the perspective of past financial years especially given the apparent absence of comparative historical data in the other submissions to the committee that I have read,
- a reduced version of material (and other updating) I would have submitted to the committee in person had public hearings not ended.

As the rebound in inflows, dam levels and southern basin river flows began in the second half of 2010 (and continued so strongly in early 2011), they stand out more sharply in financial years than in "calendar year" aggregates shown in my earlier submissions to MDBA and this committee. The black line in the top panel of the following graph shows that (even if no rain fell in May/June) **the "Flow to South Australia" (and to the Murray mouth) in 2010/11 will be the highest since the 1970s** (and the "summary table" shows many other aggregates recovering strongly). The blue lines show the main inflow aggregates published regularly by the MDBA – and which are so difficult to reconcile with totals shown in the "guide" (eg about 9000GL pa for "Total inflows -excluding Menindee and Snowy releases" – compared with 15900 in the Guide for 'Total inflows - excluding Darling'). The brown lines show total diversions for NSW and the total for "NSW, Vic & S.A" – and the orange line adds Queensland for the dozen years data is available. Despite year to year fluctuations, one can discern an upward trend in NSW and Victorian diversions until the late 1990s – when the recent long period of low inflows began.

The lower panel attempts to reduce the impact of short term fluctuations by reverting to 10 year averages – and a longer time period. The longer term growth in NSW and Victorian diversions shows up as the difference between the red and black, and yellow and red lines respectively. The long term downtrend in "flow to SA" is clearly due to diversions upstream. The difference between the two black lines shows how small South Aust diversions are in relation to both the total water flowing to SA – and as a proportion of basin wide diversions. The dotted purple line shows the broadest aggregate one can compile from MDBA data, ie Total inflows, including Menindee and Snowy Mountains releases from Murray 1. It is confusing for the MDBA to publish series for "System Inflows" whose average aggregate levels are smaller than some of their data on "diversions"

As the rapid growth in recent months in 2010/11 "year to date" totals was predictable from water already in the system, my conclusions have not changed. **My original submission focused heavily on apparent flaws in modeling - both economic and streamflow/salinity**. Even although it may not have been picked up by others, there should be no doubt that **modeling underlying figure 8.7 in the guide (Salt exports through the Murray mouth) is flawed** – as it seems based on an assumption that salt "exports" rise in direct proportion to river flows (and ignores salt removed by interception schemes upstream). There is abundant evidence that "on average" higher flows mean lower average salinity (top panel of "graph III" in my original submission). Thus, optimum flows to the Murray mouth could be much less than 7060 and 7745 GL pa suggested in the guides scenarios of cuts of 3000 and 4000GL.

Flows and diversions by financial years

All data in gigalitres in year to June. Inflows data as published in MDBA weekly reports. Diversions data from MDBA submission to Regional Aust committee. Data for 2010/11 assumes no new inflows after mid April, and 20,000ml per day to SA from end April.

I note many others (including bodies/people of considerable standing) have made written and oral submissions to the committee about weaknesses of modeling used in the "guide". I also note ABARES evidence to the committee supported its economic modeling (showing large cuts in water producing small reductions in basin employment) – but find it unconvincing. I acknowledge (ABARES defence) that reduced availability of water would encourage greater

use on crops yielding higher returns - but note other submissions have pointed to some such crops, eg grapes and other fruit, being prone to major price gluts from oversupply.

One could argue about the reliability of models (both economic and water flows) until the cows come home - but some will remain skeptical (often justifiably) no matter how good the models are. In these circumstances, it is unwise to rely on "model results" when there is more easily understood evidence available – as there is with the case for reducing overall diversions from (at least some) basin rivers. My graphs and "summary table" contain some examples.

I am encouraged by statements by the MDBA's new chair about a fresh start to the "guide" and that the next version will be a "starting point" for further discussions with stakeholders. Further, working through the details (including how much engineering solutions may contribute) and alignment with State Govt. water plans will take some years. I hope this committee will emphasize the desirability of a careful considered approach on the basis of the best available objective evidence. It seems to me that **working towards targets for desirable flows at various points in the basin (especially end flows of major tributaries) seems more important than setting SDLs based on long term averages.** It does not make sense to reduce diversion limits to apply in years when water is plentiful. The last decade demonstrated that the critical issues are fluctuations in inflows/availability and how to reduce diversions and/or supply the environment when water is scarce.

On the subjects of shortage and objective indicators, I return to the indicator of system health where there is long run historical data, ie salinity – the subject of the following graph. My original submission noted that excessive salinity and other degradations in the lower Murray and lakes in the decade to 2010 seemed as much due to prolonged low inflows to the system as to excessive diversions (which the SDLs proposed in the Guide would not have stopped – without further cuts in temporary allocations). It also noted that salinity in the lower Murray and Lake Alexandrina had recovered to close to longer term lows by the end of 2010 – well

Salinity and rainfall

before the peak flows generated by the summer floods in Qld, NSW and Victoria had arrived. These floodwaters washed a lot of long term build up of salt and decayed vegetation into the river, especially in northern Victoria, and produced adverse "spikes" in water quality. However, despite record rains across northern Victoria, the spikes in salinity went to smaller peaks than in earlier years and are now receding. This is despite the proportion of flows coming from the (usually much saltier) Darling being above long term averages and still rising. Thus, salinity in the lower Murray and Lake Alexandrina seems to be in the process of returning to record lows. The graph on the preceding page shows monthly average salinity (microseimens/cm – last plot is for the first half of April) and mm of rainfall in the previous 5 months at some relevant points on the Murray and lower Darling (5 months because it suits the scale and covers the length of the average rain season).

After sharp falls in the middle months of 2010, associated with the initial recovery in flows to the lower lakes, salinity in lake Albert has fallen more slowly. To have such a slow decline (from about 8000 to 6700u/cm) in the 5 months to mid April despite over 9000GL of water flowing past Blanchetown suggests that engineering works need to be part of the solution in the lower lakes (as I believe they should be in many other parts of the basin).

I am also attaching updates of graphs in my original submission most affected by additional data (ie graphs 1, III and V) although some changes are fairly minor. I have changed the scale on the lower panel of graph III to show lake levels, and the recent reductions in salinity at Milang and Poltalock on Lake Alexandrina more clearly - at the expense of the 2007-9 extremes at Goolwa disappearing off the top of the scale. Perhaps it is also worth noting that the "average" seasonal trough in storage levels is normally in (early?) May – yet the total in storages (graph I) continued rising almost throughout 2010/11 – and is around record levels for this time of year. Surely such a strong position suggests that this committee (and the MDBA) has time to fully assess the environmental benefits of the recent rains before the MDBA releases an updated guide – which I fervently hope will contain much more objective historical data and analysis than its predecessor.

As noted previously, I want to see BOTH a healthy river system and communities within it and am happy to assist the committee however I reasonably can. Naturally, this would include traveling to Canberra to attend a meeting of the committee and provide any supporting material may seek.

Rob Foster 18 April 2011

(Copy to MDBA)

$ \frac{1}{1000} \frac{1}{1000} - \frac{1}$	×		5							2	-	<	-				•	•	-	2	3
$ \frac{1}{1000} \frac{1}{100$	1	-	1	-				-	-	2	-	2					,	-	,	As more add	the same
Off the length Answer Production Productin Production Producti	Tuide t	o Plan		+001	y 05 20 y	00 ⁰	10. 10	02.0 20	AE0. E0	MAD. MO	0/50' 50	190 . 06/	02 02	08 .08	60	9/10	11/01/	~	overage	uctions in D	versions
Internet in the second memory of the second memor	Diver.	t te	flow t end	Inflows												<u>ę</u> L_	(mid April)		2000/10	of 3000gl	of 4000gl
Distribution Distribution<				Inflows EXcl. Merindee & Snowy. Snowy releases from Murray 1 Inflows into Machatas	8212	36 12 26	90 10 10 10 10	82	និន្ត ខ្លួនន	63 48) 339 116	52 60 121 0	29	885	829	8 88	3586	(16500) (1430) (1430)		4177 1044		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-1	1021	Darling flow at Bourke Darling end flow (Bertundy)	182	10.22	322	188	148	38	187 (52	0.0	1815	139	6.6	88	2000		912	1276	13
$ \frac{1}{10000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$			53	to Darling from Namol (at Walgett) to Darling from Macquarie (Carinda)	- 21	2.2	82	\$ R	2 2	~ 2	0 v 2	<u>e</u> n	5.0	6 8	5	460	(300)		302	969	6
No. No. <td></td> <td></td> <td></td> <td>Diversions in year to June (1920-</td> <td><u>0</u></td> <td></td>				Diversions in year to June (1920-	<u>0</u>																
Notice Notice<		221		NSW Murray Microsoft / Inchestions Microsoft		83	000	8 1 8	131 020	202	10 16	50	81	¥ 3	¥ :	439	(850)		1601	1247	<u> </u>
$ \frac{1}{2} 1$	-	18		SA Munay (Included Includ)	234 5	19	10	1	18	20	18	19	12	i N	192	400	(acc)		585	264	4
$ \frac{1}{1000} (500) (500$	47	7 ;		Total Murray (includes SA)		48	¥ 8	85 89	80 80 80	22	185	98 o	2 2 2 2	33	88	880			2042	2943	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	12		Other NSW (Total NSW less Murrray & Murrum)	6	12	20	2 12	101	38 18	10	82	8 8	16	282	929			1215	6491	121
Since for the formant, fourther,	- -	39		Total NSW (Murray, Murrumb.& other) 15 Coulours	52 52	8	6 9 6 9	14 S DO	19 H	22 X	8 i 8 i	2 °	8 2	83	88	50 S			2852	4092	ž,
013 Trans Question 470 911 100		28		Total Victoria (Murray, Goulburn & other 24	144 34	10	: M 19	8 8 8 8	32		325	8	8	1	18	1809			2681	2601	22
New How Image <	1	012		Total Queensand Total (sum of above) 42	520 921	00 120	50 115 50 115	17 F	50 875	28 28	92 33 14 919	- 13 2 2	8 A 8 4	25 25	28	22.00			7678	7945	6
10 Othere Constraint 100 Constraint Constraint </td <td></td> <td></td> <td></td> <td>River flows 100+ y</td> <td>VERT</td> <td></td>				River flows 100+ y	VERT																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Outlow from Hume	4	23 48	88 33	8 F	30	92 29	575 272	8 ·	8:	=	233	1944	(4300)		3118		:
130 Time Manualization 131 136 132 133			1600	from Goulburn (near Murray)	12		28	8	14	17	(9 (3	22	: 2	18	15	1	(2850)		155	1785	10
Notice is the second		-	1593	from Murrumbidgee (Bairanaid) 18 Murren at Eucone	118	49 g	82	1 2	12	20	22	= 8 2 -	28	88	50 6	187	(2250)		202	2109	23
Nurvey fease is then chosen 302 103 1135 103 1033				Murray flow to S.A.	22	8		121	5	22	23		1 8 1	8	6	1691	(12500)		2220		
Water in Scorege (and Jun except 2011) Zame Cancer C	1	3677 5	5105	Murray rose at Bancheown Basin total - outflow thru Murray mouth		*	07 70	: 8	8	8	8	2	8	8	ş	2	(20800)		5	7060	22
Dutimenting Dutimenting 222 202 232 130 232 330 401 232 300 317 300 317 300 317 300 317 300 317 300 317 300 317 300 317 300 317 300 300 317 300 300 301 317 300 301				Water in Storages (end Jun except 2011)												-	nid April	Capac- Ity er	nut br		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Dartmouth	1	80	26 S	11° 210	48 18	51 S 2	12 12 12 12 12 12 12 12 12 12 12 12 12 1	20	81	30	53	27	(2415)	(9060)	1672		
Meriotice 11/3 2000 400 70 321 339 326 79 541 2328 339 369 793 521 531 339 560 531 560 531 530 560 531				Victoria	Ŧ	1 10	38	18	17 V	5 M 1 2	88	10	8 2	18		354	(010)	(223)	324		
Note of capacity State				Merindee More Arms MCI Merindee	1	20	000	80	R R	22 23 23	81 81	5 5	£ 2	19 10	8 28	1522	(2010)	(1731)	288		
Burnluck 533 412 238 23 443 248 355 349 342 323 441 329 320 32				% of capacity	2 13	1日 1月	1年 1元	18 12	8	8	14	12	. e	1.00	1 E	454	83%	(mone)	34%		
Bits Bits <t< td=""><td></td><td></td><td></td><td>Burniejuck Bieweine</td><td>in F</td><td>5 8 6 8</td><td>19</td><td>÷ 88 0</td><td>4 1</td><td>8 8 8 8</td><td>8 8 8 8</td><td>in e</td><td>6.5</td><td>88</td><td><u>8</u>3</td><td>421</td><td>(1000)</td><td>(1026)</td><td>229</td><td></td><td></td></t<>				Burniejuck Bieweine	in F	5 8 6 8	19	÷ 88 0	4 1	8 8 8 8	8 8 8 8	in e	6.5	88	<u>8</u> 3	421	(1000)	(1026)	229		
Major 7 dams (listed above) 7034 5301 2305 3373 5409 22321 2441 2736 4933 5409 2333 5404 (13016) (15343) 6931 Variage (major 7) n.a. 46% 36% 17% 23% 29% 36% 15% 23% 54% 53% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54%				Bidon		. e	18		10	88	88		1		10	916	(2776)	(1000)	1068		
Change (mjör 7) 1496 2943 978 859 1056 738 723 1766 (8522) Che indicator of system health - Salinity (Calendar years) 37 119 73 105 138 723 1766 (8522) Che indicator of system health - Salinity (Calendar years) 37 31 104 97 115 73 326 718 723 1766 (8523) Che indicator of system health - Salinity (Calendar years) 36 31 03 369 510 472 566 738 733 106 R Mongan 37 380 310 319 1327 1348 1168 2003 3956 548 418 R otherwise noted, all flow storage this positive for the year ending lues. Salinity is average this microscenter of an ADBA week reports. Some inconstructed hearem components & it response to a written request. This has been supplemented where necessary for the model week reports, arean aread flow reports, arean area distribution reports, area area to brock supplemented an inconstruction week reports, arean area to brock supplemented an endition week reports, arean area to brock reports or the reports or theare to a start or the reports or theare to brock reports or the re				Major 7 dams (listed above)	c	23	5 A	20 83	22 22 22 22	73 44	23 23	2×	21	11	812	44.04	(91011)	(15343)	4913		
One indicator of system health - Salinity (Calendar years) 31 104 97 115 79 81 71 54 102 360				change (major 7)		r i	- H	56 -29	5 E	2 82 2 82	201	- -	28	2 22	. 23	1766	(28532)				
Common Number C22 C31 C13 <				One indicator of system health - Salinity (Calenda	- Anone	~	1		-		5	1	i	7	6	2		3		
er Mienig (Lake Alexandrica) 1142 n.e. 1049 1139 1127 1348 1168 2003 3956 5448 4194 540 2406 2406 as otherwise noted, all flows and levels data are in gigathrea for the year ending June. Salimity is average daily microsetimers per cm for calendar year. All data for 2010/11 is up to mid April. to data on actual cheersions (exol. interceptions) from MDA submission to Regional Australia commisses. 2010/11 YTD from MDBA weekly regords. Some loconstancies between components & torals. I form actual cheersions (exol. interceptions) from MDBA submission to Regional Australia commisses. 2010/11 YTD from MDBA weekly regords. Some loconstancies between components & torals. I form actual cheers are claimed on the work of the year of the main exol. "Supplied by MDIA on 30 November - in regionse to a written request. This has been supplemented where necessary data in the main events", annual regional "Landow Totalia". "Convertiber - interception actual cheers are claimed on the more actual cheers and the cuerce of the formation of the main events." "Convertiber - interception are claimed on the more actual cheers are claimed and are intercessary actual cheers and active the data form NSW without and the formation and active formation and active the data form NSW without and the formation active the more active				at Sean Hill at Morgan	N IN	100	88	- * 55	े र इ.स.	10	28	5 5		88	5 g 2	282	096		448		
is otherwise noted, all flows and levels data are in gipateres for the year ending June. Salinity is average daily microseliments per cm for calendar year. All data for 2010/11 is up to mid April. data on actual diversions (exol. Interceptions) from MD8A submission to Regional Australia committee. 2010/11 YTD from MD8A weekly reports. Some inconstructies between components & totals. Iong term data on flows, storages & selinity taken from an exol "voctions" supplies to MD8A on actual diversions request. This has been supplemented where necessary data in MD8CAMDRA. "Hurrary Reve weekly reports", amount reports or "Torught updates". "COverate" - In response to a written request. This has been supplemented where necessary data in MD8CAMDRA. "Hurrary Reve vectors", amount reports or "Torught updates". "Coverate - In actual diversions are calendar years. Name actuated where necessary are 11 frome data Reve All Annume Anex revectors or "Torught updates". "Coverate - In a tada 40 years") averages are calendar years. Name and actual revers. Name data from NSW when we call reverse data actuate the relevancements. A tendent from are predicted from All Annumers, "Torught updates". "Coverate actuated for Standard years. The actuate the reverse of Annumers and the actuate the reverse of Annumers and All Annumers and action from All Annumers and actuated from the reverse actuated and from NSW write:				at Milang (Lake Alexandrina)	2	42	va. 10	11 614	59 13.	27 13	48 110	88	8	8	848	1611	540		2406		
t data on actual diversions (exol. interceptions) from MDBA submission to Regional Australia commisee. 2010/11.YTD from MDBA weekly reports. Some inconstrancies between components & totals. It both green data on flows, storages & selfnity taken from an exol. "workhood," supplied by MDBA on 30 November - in response to a written request. This has been supplemented where necessary a data in MDBCAMDDBA "Nurrur River weekly reports or "Drought updates". "100year+" (& some "1st 40 years") averages are calender years. Name A Monquire data from NSW without Are 11 roome data after advicest Amount reports or "Drought updates". "100year+" (& some "1st 40 years") averages are calender years. Name of Almounted data from NSW without Are 11 roome data after advicest Amount many river flows are passe. "Waart of data" totals for Stanchards. "A secture "." Best Australia and and the sector averages and and are material.	de la	netto stri	rivise n	med, all flows and levels data are in gigalitres fo	or the year	ar endin	g June. 5	Salinity Is	s average	n dally mi	loroseime	ns per o	n for cab	endar ye	ar. All di	ta for 20	In \$1 11/010	p to mid Ap	arili.		
y data in Rombe-Mattike Yentrey Henrick reports of "Docent updates", "10 over 1 and 40 versages are calendar vers. Never A Monute data from NSW weiter And 11 in Rombe-Mattike Henrickbenkeiseb, Mattike flows are passe, "wart to data" totals for Standarens. "Den to SA". & Bertundy are still reline sharedu.	δų.	it data on it long ter	n actua sm dat	I diversions (excl. interceptions) from MDBA sub a on flows, storages & salinity taken from an ex	bmission coel "work	to Regio	upplied t	valia con vy MDBA	on 30 N	2010/11 ovember	VTD from	MDBA V	versity re	ports. Sc request.	This has	hsittencie been su	s between a	components where nex	s & totals cressery		
	1	y data in Apr 11 (s	MDBC	AMDDA "Murray River weekly reports", annual lata still subject to checking/revision). Although	reports o	er Drow	pht upda 1 are pair	tesh. "10 "their pi	Oyear+	(& some	ter totals	for Sland	Verages	are caler "Flow to	S.A [*] , &	S. Namo Bertundy	A Macquar are still ris	rie data tro	m MSM m	10101	

SUMMARY TABLE

All data in gigalitres. Plotted monthly to end Mar 2011, storage levels to mid April.

All lines with markers show salinity levels in microseimens/cm. Top panel is average in 10 years ending the year shown. Lower panel monthly - last plots are mid Apr 2011. Flow rate in lower panel is days to fill L.Alexandrina. Lake level is mm from 1m above sea level on inverted scale. From 2007 to early 2010 Goolwa levels were above 10,000 (up to 30,000) and would not fit the scale.

Graph V Goulburn and Murrumbidgee flows and storage

Monthly flows and levels in gigaliters. Diversion rate are annual diversions divided by 12. Wagga rainfall is mm in previous 5 months. Last plots for Mar 2011.

			ļ									-					-	-			
	A	в	υ	ш	υ	т	-	_	×	_	Σ	z	0		~	~	s	т С		_	×
7	- As in	per Model I guide to Pl	used Ian		Last 100+ yrs	40 yrs	.00/01	.01/02	.02/03	03/04 .(04/05 .(15/06 .0	. 70/90	. 80/70	60/80	09/10	.10/11	avera	As pro	posed for is in Divers	-ed- ons
mΖ	annual	Diversion	flow tord	Tufforus												ĔĽ	(mid April)	.2000	/10 of 30(00gl of 2	000gl
10	15959		arein	Inflows EXcl. Menindee & Snowy		8930	9898	4423	2085	5563	4878	6173	1067	2170	1928	3586	(16500)	4	177		
9	. ,			Snowy releases from Murray 1		1234	1210	855	1309	939	1169	1215	1027	711	888	1114	(1430)	Ţ	044		
				Inflows into Menindee		2277	2686	93	52	482	291 177	171	21	762	181	2180	(5000)		692 012		
οσ	-		1001	Darling now at bourke Darling and flow (Bartundy)		1256	0205 1531	202 1048	1.04 5.0	10/	4/7 26	515 16	77	434 140	767	245U	(8000)		912 278	176	1316
<u>ا ا</u>	- 2128		1021 653	to Darling from Namoi (at Walge	ett)	oczt	1201	45	32	n n	95 410	200	77	747 747	116	460 460	(2500)		307	969 1770	60Z
Ħ				to Darling from Macquarie (Carir	(epu	120	na	30	na	na	2	м	5	na	2	м	(300)				
17				Diversions in vear to June	(1920-70)																
14	-	1721			0107/1		2070	2113	879	1312	1241	1667	602	244	341	439	(850)	÷	191	1247	1086
15		1656		Vic Murrav (including Kiewa)			1689	1890	1723	1453	1472	1553	1387	784	812	950	(550)	i H	371	1214	1064
16	1	665		SA Murray	234	561	662	621	736	607	620	590	626	423	485	480			585	492	433
17		4042		Total Murray (includes SA)			4421	4624	3338	3372	3333	3810	2615	1451	1638	1869		ē	047	2943	2583
18		2061		Murrumbidgee			2747	2348	1793	1775	1618	2200	960	515	602	910		H	547	1396	1190
19		1861		Other NSW (Total NSW less Murr	rray & Murrumb.)		2462	2284	1463	1035	807	1171	796	707	786	636		Ħ	215	1449	1286
20		5643		Total NSW (Murray, Murrumb.& o	other) 1592	5228	7279	6745	4135	4122	3666	5038	2358	1466	1729	1985		Ϋ́,	852	4092	3562
77		160/		Goulburn	0 ather 7111		1569	1/00	10/6	1596	1553	1592	651 000C	684 1 1 1	628	804		- 6	185	1151	766 1970
77		0000		Total Victoria (Murray, Gouiburri Total Oucconcland		04 I I	1040	1024	C067	217C	0010	2020	150	CCCT	CUC1	4001		V		1007	1077
212		2101		Total Queensiand	0207	0000	00001	341 11521	214	CIS	592 7014	310 0106	100 5724	400F	1100	1232 FED6		r	000	7045	047 6016
25		TU347		i otal (sum ol above)	4270	0026	NENZT	TCCTT	ncno	00/0	410/	0616	+c7c	0644	4100	ancc			0/0	C+6/	0460
26				River flows	100+ vea	ε.															
27				Outflow from Hume		4423	4888	3585	4392	3092	2979	3775	3580	1311	1737	1844	(4300)	m	118		
28	1 1804		1708	from Ovens (Wangaratta)	1549	1591	2103	877	362	1379	1254	1465	132	521	424	864	(3400)	-	938	1716	1717
29	3559		1600	from Goulburn (near Murray)		1374	1109	220	171	494	411	470	146	205	131	184	(2850)		354	1785	1937
В	4791		1593	from Murrumbidgee (Balranald)	1811	1146	589	284	130	123	125	179	172	138	105	187	(2250)		203	2109	2325
Ш				Murray at Euston	8139	6466	5514	1934	2479	2763	2731	3211	2096	1574	1479	1948	(10700)	01	573		
22				Murray flow to S.A. Murray flow at Blanchetown	6706	6808	5903 5803	1650	1135 1135	2082	1306	2397 1065	1405 056	130	11/5 566	1023	(12500)	V F	22U 645		
2 K	- 31781	13677	5105	Basin total - outflow thru Murrav	/ mouth		2000				DOCT					C 7 O T	(nnnnt)	-		7060	7745
35																	Ca	pac-			
36	,			Water in Storages (end Jun e	sxcept 2011)												nid April i	ty end Ju	Ę		
37				Dartmouth		2122	3092	3214	1148	1858	1717	2487	486	664	804	1252	(2415) (3	1 (906)	672		
80				Hume		1107	1229	551	519	294 257	896 24F	622	385	467	316	796	(0672)	038)	607 274		
500				Victoria		400 4170	0000	292	187	007	045 000	415 090	704	503 E41	241 270	1 E 2 4	(440)	(1/0)	524 500		
41				MDBA dams INCI Menindee		4857	6711	4557	2023	2741	3288	3793	1234	1974	1589	3924	(2655) (9	352) 3	183		
42	1			% of capacity		52%	72%	49%	22%	30%	35%	41%	13%	21%	17%	42%	83%	- m	14%		
43				Burrinjuck		553	412	258	72	404	249	345	319	426	382	421	(1000) (1	026)	329		
4				Blowering		789	860	412	192	88	286	870	395	609	542	744	(1585) (1	631)	500		
45				Eildon		n.a.	1081	711	377	673	940	748	354	474	433	916	(2776) (3	1334) 1	068		
40				Major / dams (listed above) % capacity		0 2	160%	360C 2606	2662	2/CS	4433 2006	260%	140%	100%	180%	200%	313010) (13 820%	543) 4	20%		
48	<u> </u>			vo capacity change (major 7)			0.04	-1496	-2943	0/ C7	859	1056	-3266	718	N.01	-1766	(8532)	ר			
49	1							1	2	5	0			2]	000	(2000)				
50	,			One indicator of system healt	th - Salinity (Cal	endar y	ears)														
51				at Swan Hill		252	230	131	104	97	115	79	81	71	54	102	275		106		
22				at Morgan		5/4	513	631	473	41/	360	369	510	4/2	506	787	360	- (448		
2				at Milang (Lake Alexandrina)		1142	n.a.	1049	1159	1327	1348	1168	2003	3956	5448	4194	540	Ż	406		
55	- Notes:	Unless oth	nerwise n	oted, all flows and levels data are	e in gigalitres for t	he year (ending Ju	ne. Salin	ity is ave	rage daily	/ microse	imens pe	r cm for .	calendar	year. All	data for 2	010/11 is up to	o mid April.			
56		Most data	on actué	I diversions (excl. interceptions) f	from MDBA submi	ssion to	Regional	Australia	committ	ee. 2010/	11 YTD f	rom MDB	A weekly	reports.	Some inc	consitenci	es between com	iponents & t	otals.		
57		Most long	term da	a on flows, storages & salinity tal	ken from an excel	"workbo	ok" supp	ied by M	DBA on 3	0 Novem	ber - in n	esponse t	co a writt	en reque:	st. This h	as been si	upplemented w	here necess	ary		
58		by data	in MDBC	A/MDBA "Murray River weekly rep	ports", annual rep	orts or "I	Drought (pdates".	"100yea	r+" (& so	me "last	40 years'	') averag	es are ca	lendar ye	ars. Nam	oi & Macquarie	data from N:	SW water.		
59	Updated	mid Apr 1.	1 (some	data still subject to checking/revis	sion). Although ma	any river	flows are	e past the	eir peaks	"year to	date" tot	als for Bl	anchetov	n, "Flow	to S.A". 8	& Bertund	y are still rising	sharply.			

SUMMARY TABLE